Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-25T11:48:09.287Z Has data issue: false hasContentIssue false

Elliptical galaxies/stellar halos connection

Published online by Cambridge University Press:  14 May 2020

Magda Arnaboldi
Affiliation:
European Southern Observatory, K. Schwarzschild Str. 2, DE-85748, Garching, Germany email: marnabol@eso.org
Claudia Pulsoni
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, DE-85748 Garching, Germany emails: cpulsoni@mpe.mpg.de, gerhard@mpe.mpg.de Excellence Cluster Universe, Boltzmannstrasse 2, DE-85748, Garching, Germany
Ortwin Gerhard
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, DE-85748 Garching, Germany emails: cpulsoni@mpe.mpg.de, gerhard@mpe.mpg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cosmological simulations predict that early-type galaxies (ETGs) are the results of extended mass accretion histories. The latter are characterized by different numbers of mergers, mergers’ mass ratios and gas fractions, and timing. Depending on the sequence and nature of these mergers that follow the first phase of the in-situ star formation, these accretion histories may lead to ETGs that have low or high mass halos, and that rotate fast or slow. Since the stellar halos maintain the fossil records of the events that led to their formation, a discontinuity may be in place between the inner regions of ETGs and their outer halos, because the time required for the halos’ stars to exchange their energies and momenta is very long compared with the age of these systems. Exquisite deep photometry and extended spectroscopy for significant samples of ETGs are then used to quantify the occurrence and significance of such a transition in the galaxies’ structural and kinematical parameters. Once this transition radius is measured, its dependency with the effective radius of the galaxies’ light distribution and total stellar masses can be investigated. Such correlations can then be compared with the predictions of accreted, i.e. ex-situ vs. in-situ components from cosmological simulations to validate such models.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Amorisco, N. C. 2017, MNRAS, 464, 2882CrossRefGoogle Scholar
Arnaboldi, M., Aguerri, J. A. L., Napolitano, N. R., et al. 2002, AJ, 123, 760CrossRefGoogle Scholar
Arnaboldi, M., Pulsoni, C., Gerhard, O., et al. 2017, IAUSymp. 323, 279Google Scholar
Bullock, J. S. & Johnston, K. V., 2005, ApJ, 635, 931CrossRefGoogle Scholar
Cappellari, M., Emsellem, E., Krajnović, D., et al. 2011, MNRAS, 413, 813CrossRefGoogle Scholar
Cappellari, M., McDermid, R. M., Alatalo, K., et al. 2013, MNRAS, 432, 1862CrossRefGoogle Scholar
Coccato, L., Gerhard, O., Arnaboldi, M., et al. 2009, MNRAS, 394, 1249CrossRefGoogle Scholar
Cooper, A. P., D’Souza, R., Kauffmann, G., et al. 2013, MNRAS, 434, 3348CrossRefGoogle Scholar
Cortesi, A., Arnaboldi, M., Coccato, L., et al. 2013, A&A, 549, 115Google Scholar
Douglas, N. G., Napolitano, N. R., Romanowsky, A. J., et al. 2007, ApJ, 664, 257CrossRefGoogle Scholar
Emsellem, E., Cappellari, M., Krajnović, D., et al. 2007, MNRAS, 379, 401CrossRefGoogle Scholar
Foster, C., van de Sande, J., D’Eugenio, F., et al. 2017, MNRAS, 472, 966CrossRefGoogle Scholar
Hartke, J., Arnaboldi, M., Gerhard, O., et al. 2018, A&A, 616, 123Google Scholar
Hilz, M., Naab, T., & Ostriker, J. P., 2013, MNRAS, 429, 292410.1093/mnras/sts501CrossRefGoogle Scholar
Graham, M., Cappellari, M., Li, H., et al. 2018, MNRAS, 477, 4711CrossRefGoogle Scholar
Karademir, G. S., Remus, R.-S., Burkert, A.et al. 2019, MNRAS, 487, 318CrossRefGoogle Scholar
Kormendy, J., Fisher, D. B., Cornell, M. E., & Bender, R., 2009, ApJS, 182, 216CrossRefGoogle Scholar
Krajnović, D., Emsellem, E., Cappellari, M., et al. 2011, MNRAS, 414, 2923CrossRefGoogle Scholar
Longobardi, A., Arnaboldi, M. Gerhard, O., et al. 2018, A&A, 620, 111Google Scholar
Oser, L., Ostriker, J. P., Naab, T., Johansson, P. H., & Burkert, A., 2010, ApJ, 725, 2312CrossRefGoogle Scholar
Pulsoni, C., Gerhard, O., Arnaboldi, M., et al. 2018, A&A, 618, 94Google Scholar
Rodriguez-Gomez, V., Pillepich, A., Sales, L. V., et al. 2016, MNRAS, 458, 2371CrossRefGoogle Scholar
Röttgers, B., Naab, T., Oser, L., 2014, MNRAS, 445, 1065CrossRefGoogle Scholar
van Dokkum, P. G., Whitaker, K. E., Brammer, G., et al. 2010, ApJ, 709, 1018CrossRefGoogle Scholar
Toft, S., van Dokkum, P., Franx, M., et al. 2007, ApJ, 671, 285CrossRefGoogle Scholar
Wu, X., Gerhard, O., Naab, T., et al. 2014, MNRAS, 438, 2701CrossRefGoogle Scholar