Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-29T05:12:51.475Z Has data issue: false hasContentIssue false

The Einstein@Home Survey for Gamma-ray Pulsars

Published online by Cambridge University Press:  04 June 2018

Colin J. Clark
Affiliation:
Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK E-mail: colin.clark-2@manchester.ac.uk Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany
Jason Wu
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany
Holger J. Pletsch
Affiliation:
Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover, Germany Leibniz Universität Hannover, D-30167 Hannover, Germany
Lucas Guillemot
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany Laboratoire de Physique et Chimie de l’Environnement et de l’Espace – Université d’Orléans/CNRS, F-45071 Orléans Cedex 02, France Station de radioastronomie de Nançay, Observatoire de Paris, CNRS/INSU, F-18330 Nançay, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Since the launch of the Fermi Gamma-ray Space Telescope in 2008, the onboard Large Area Telescope (LAT) has detected gamma-ray pulsations from more than 200 pulsars. A large fraction of these remain undetected in radio observations, and could only be found by directly searching the LAT data for pulsations. However, the sensitivity of such “blind” searches is limited by the sparse photon data and vast computational requirements. In this contribution we present the latest large-scale blind-search survey for gamma-ray pulsars, which ran on the distributed volunteer computing system, Einstein@Home, and discovered 19 new gamma-ray pulsars. We explain how recent improvements to search techniques and LAT data reconstruction have boosted the sensitivity of blind searches, and present highlights from the survey’s discoveries. These include: two glitching pulsars; the youngest known radio-quiet gamma-ray pulsar; and two isolated millisecond pulsars (MSPs), one of which is the only known radio-quiet rotationally powered MSP.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Abdo, A. A., Ackermann, M., Atwood, W. B., et al. 2008, Science, 322, 1218CrossRefGoogle Scholar
Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009, Science, 325, 840CrossRefGoogle Scholar
Acero, F., Ackermann, M., Ajello, M., et al. 2015, ApJS, 218, 23CrossRefGoogle Scholar
Archibald, R. F., Gotthelf, E. V., Ferdman, R. D., et al. 2016, ApJL, 819, L16CrossRefGoogle Scholar
Atwood, W., Albert, A., Baldini, L., et al. 2012, in Proceedings of the 4th Fermi Symposium, ed. Brandt, T. J., Omodei, N., & Wilson-Hodge, C., eConf C121028, 8, arXiv:1303.3514Google Scholar
Atwood, W. B., Ziegler, M., Johnson, R. P., & Baughman, B. M., 2006, ApJL, 652, L49CrossRefGoogle Scholar
Bertsch, D. L., Brazier, K. T. S., Fichtel, C. E., et al. 1992, Nature, 357, 306CrossRefGoogle Scholar
Chandler, A. M., Koh, D. T., Lamb, R. C., et al. 2001, ApJ, 556, 59CrossRefGoogle Scholar
Clark, C. J. 2017, PhD thesis, Leibniz Universität HannoverGoogle Scholar
Clark, C. J., Pletsch, H. J., Wu, J., et al. 2015, ApJL, 809, L2CrossRefGoogle Scholar
Clark, C. J., Pletsch, H. J., Wu, J., et al. 2016, ApJL, 832, L15CrossRefGoogle Scholar
Clark, C. J., Wu, J., Pletsch, H. J., et al. 2017, ApJ, 834, 106CrossRefGoogle Scholar
Fermi-LAT Collaboration. 2017, ArXiv e-prints, arXiv:1705.00009Google Scholar
Halpern, J. P., & Holt, S. S., 1992, Nature, 357, 222CrossRefGoogle Scholar
Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., & Collins, R. A., 1968, Nature, 217, 709CrossRefGoogle Scholar
Kniffen, D. A., Hartman, R. C., Thompson, D. J., Bignami, G. F., & Fichtel, C. E., 1974, Nature, 251, 397CrossRefGoogle Scholar
Kuiper, L., Hermsen, W., & Dekker, A. 2017, ArXiv e-prints, arXiv:1709.00899Google Scholar
Manchester, R. N., Hobbs, G. B., Teoh, A., & Hobbs, M., 2005, AJ, 129, 1993CrossRefGoogle Scholar
Parent, D., Kerr, M., den Hartog, P. R., et al. 2011, ApJ, 743, 170CrossRefGoogle Scholar
Pletsch, H. J., & Clark, C. J., 2014, ApJ, 795, 75CrossRefGoogle Scholar
Pletsch, H. J., Guillemot, L., Allen, B., et al. 2013, ApJL, 779, L11CrossRefGoogle Scholar
Pletsch, H. J., Guillemot, L., Allen, B., et al. 2012a, ApJ, 744, 105CrossRefGoogle Scholar
Pletsch, H. J., Guillemot, L., Fehrmann, H., et al. 2012b, Science, 338, 1314CrossRefGoogle Scholar
Pletsch, H. J., Guillemot, L., Allen, B., et al. 2012c, ApJL, 755, L20CrossRefGoogle Scholar
Saz Parkinson, P. M., Dormody, M., Ziegler, M., Ray, P. S., et al. 2010, ApJ, 725, 571CrossRefGoogle Scholar
Thompson, D. J., Fichtel, C. E., Kniffen, D. A., & Ogelman, H. B., 1975, ApJL, 200, L79CrossRefGoogle Scholar