Skip to main content Accessibility help

Effects of ICMEs on High Energetic Particles as Observed by the Global Muon Detector Network (GMDN)

  • A. Dal Lago (a1), C. R. Braga (a1), R. R. S. de Mendonca (a1), M. Rockenbach (a1), E. Echer (a1), N. J. Schuch (a2), K. Munakata (a3), C. Kato (a3), T. Kuwabara (a4), M. Kozai (a5), H. K. Al Jassar (a6), M. M. Sharma (a6), M. Tokumaru (a7), M. Duldig (a8), J. Humble (a8), P. Evenson (a9) and I. Sabbah (a10)...


The Global Muon Detector Network (GMDN) is composed by four ground cosmic ray detectors distributed around the Earth: Nagoya (Japan), Hobart (Australia), Sao Martinho da Serra (Brazil) and Kuwait city (Kuwait). The network has operated since March 2006. It has been upgraded a few times, increasing its detection area. Each detector is sensitive to muons produced by the interactions of ~50 GeV Galactic Cosmic Rays (GCR) with the Earth′s atmosphere. At these energies, GCR are known to be affected by interplanetary disturbances in the vicinity of the earth. Of special interest are the interplanetary counterparts of coronal mass ejections (ICMEs) and their driven shocks because they are known to be the main origins of geomagnetic storms. It has been observed that these ICMEs produce changes in the cosmic ray gradient, which can be measured by GMDN observations. In terms of applications for space weather, some attempts have been made to use GMDN for forecasting ICME arrival at the earth with lead times of the order of few hours. Scientific space weather studies benefit the most from the GMDN network. As an example, studies have been able to determine ICME orientation at the earth using cosmic ray gradient. Such determinations are of crucial importance for southward interplanetary magnetic field estimates, as well as ICME rotation.



Hide All
Braga, et al. 2011, 32nd International Cosmic Ray Conference, 10, 286, ISBN: 978-1-63439-138-2
Burlaga, L. F., Sittler, E., Mariani, F. & Schwenn, R. 1981, J. Geophys. Res., 86, 6673
De Mendonca, et al. 2016, ApJ, 830, 88
Duldig, M. 2000, Space Science Review, 93, 207
Forbush, S. E. 1937, Physical Review, 51, 12, 1108
Fushishita, A., et al. 2010, ApJ, 715, 2, 12391247
Gosling, J. T., McComas, D. J., Phillips, J. L. & Bame, S. J. 1991, J. Geophys. Res., 96, A5, 7831
Gonzalez, W. D., Echer, E., Tsurutani, B. T., Clua de Gonzalez, A. L. & Dal Lago, A. 2011, SSR, 158, 69
Howard, R. A., et al. 1982, ApJ, 263, 2L, 101
Kozai, M., Munakata, K., Kato, C., Kuwabara, T., Rockenbach, M., Lago, A. Dal, Schuch, N. J., Braga, C. R., Mendonça, R. R. S., Jassar, H. K. Al, Sharma, M. M., Duldig, M. L., Humble, J. E., Evenson, P., Sabbah, I. & Tokumaru, M. 2016, ApJ, 825, 100
Kuwabara, T., et al. 2006, Space Weather, 4, 8, S08001
Kuwabara, T., et al. 2009, JGR, 114, A05109
McDonald, F. B. 2000, Space Science Reviews, 93, 263
Munakata, K., et al. 2000, JGR, 27457
Nagashima, K., et al. 1992, Planetary and Space Science, 40, 8, 1109
Rockenbach, M., et al. 2011, GRL, 38, L16108
Schwenn, R. 1996, Astrophys. Space Sci., 243, 1, 187
Schwenn, R., Dal Lago, A., Huttunen, E. & Gonzalez, W. D. 2005, Ann. Geophys., 23, AG/2004180, 1033
Simpson, J. A. 1954, Physical Review, 94, 2, 426
Szajko, N. S., Cristiani, G., Mandrini, C. H. & Dal Lago, A. 2013, ASR, 51, 10, 1842
MathJax is a JavaScript display engine for mathematics. For more information see



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed