Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T05:04:41.278Z Has data issue: false hasContentIssue false

The early gaseous and stellar mass assembly of Milky Way-type galaxy halos

Published online by Cambridge University Press:  09 May 2016

Gerhard Hensler
Affiliation:
Dept. of Astrophysics, Univ. of Vienna, Tuerkenschanzstr. 17, 1180 Vienna, Austria email: gerhard.hensler@univie.ac.at Nat. Astron. Obs. of Japan, 2-21-1 Osawa, Mitaka-shi, Tokyo 181-8588, Japan
Mykola Petrov
Affiliation:
Dept. of Astrophysics, Univ. of Vienna, Tuerkenschanzstr. 17, 1180 Vienna, Austria email: gerhard.hensler@univie.ac.at
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

How the Milky Way has accumulated its mass over the Hubble time, whether significant amounts of gas and stars were accreted from satellite galaxies, or whether the Milky Way has experienced an initial gas assembly and then evolved more-or-less in isolation is one of the burning questions in modern astronomy, because it has consequences for our understanding of galaxy formation in the cosmological context. Here we present the evolutionary model of a Milky Way-type satellite system zoomed into a cosmological large-scale simulation. Embedded into Dark Matter halos and allowing for baryonic processes these chemo-dynamical simulations aim at studying the gas and stellar loss from the satellites to feed the Milky Way halo and the stellar chemical abundances in the halo and the satellite galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Beers, T. & Christlieb, N., 2005, Ann. Rev. A&A, 43, 531Google Scholar
Bell, E.F., Zucker, D.B., Belokurov, V., et al., 2008, Astroph. J., 680, 295Google Scholar
Belokurov, V., Walker, M.G., Evans, N.W., et al., 2010, Astroph. J., 712, L103CrossRefGoogle Scholar
Belokurov, V., Irwin, M.J., Koposov, S.E., et al., 2014, MNRAS, 441, 2124Google Scholar
Blumenthal, G.R., Primak, J.R., & Rees, M.J., 1984, Nature, 311, 517Google Scholar
Carollo, D., Beers, T.C., Lee, Y.S., et al., 2007, Nature, 450, 1020Google Scholar
Diemand, J., Kuhlen, M., Madau, P., et al., 2008, Nature, 454, 735Google Scholar
Eggen, O.J., Lynden-Bell, D., & Sandage, A.R., 1961, Astroph. J., 136, 748Google Scholar
Font, A.S., Johnston, K.V., Bullock, J.S., & Robertson, B.E., 2006, Astroph. J., 638, 585Google Scholar
Frebel, A., Aoki, W., Christlieb, N., et al., 2005, Nature, 434, 871Google Scholar
Frebel, A., Kirby, E.N., & Simon, J.D., 2010, Nature, 464, 72Google Scholar
Frebel, A., & Bromm, V., 2012, Astroph. J., 759, 115CrossRefGoogle Scholar
Frebel, A., & Norris, J.E., 2015, Ann. Rev. A&A, 53, 631CrossRefGoogle Scholar
Grebel, E.K., & Gallagher, J.S., 2004, Astroph. J., 610, L89Google Scholar
Hensler, G., Theis, C., & Gallagher, J.S., 2004, Astron. Astroph., 426, 25CrossRefGoogle Scholar
Ibata, R.A., Gilmore, G., & Irwin, M.J., 1994, Nature,370, 194Google Scholar
Jerjen, H., Da Costa, G.S., Willman, B., et al., 2013, Astroph. J., 769, 14Google Scholar
Johnston, K.V., Bullock, J.S., Sharma, S., et al., 2008, Astroph. J., 689, 936Google Scholar
Kirby, E.N., Simon, J.D., Geha, M., et al., 2008, Astroph. J., 685, L43Google Scholar
Kirby, E.N., Lanfranchi, G.A., Simon, J.D., et al., 2011a, Astroph. J., 727, 78CrossRefGoogle Scholar
Kirby, E.N., Cohen, J.G., Smith, G.H., et al., 2011b, Astroph. J., 727, 79Google Scholar
Koch, A., Grebel, E.K., Gilmore, G.F., et al., 2008, Astron. J., 135, 1580CrossRefGoogle Scholar
Koch, A., 2009, Rev. Modern Astron., 21, 9Google Scholar
Lanfranchi, G.A., Matteucci, F., & Cescutti, G., 2006, Astron. Astroph., 453, 67Google Scholar
Lanfranchi, G.A., & Matteucci, F., 2010, Astron. Astroph., 512, A85Google Scholar
Liu, L., Petrov, M., Hensler, G., et al., 2015, MNRAS, submittedGoogle Scholar
Lynden-Bell, D., & Lynden-Bell, R.M., 1995, MNRAS, 275, 429Google Scholar
Majewski, S.R., Skrutskie, M.F., Gomez-Flechoso, M.A., et al. 2013, Astroph. J., 599, 1082CrossRefGoogle Scholar
Mayer, L., Kazantzidis, S., Mastropietro, C., & Wadsley, J., 2007, Nature, 445, 738Google Scholar
Pasetto, S., Grebel, E.K., Berczik, P., & Spurzem, R., 2011, Astron. Astroph., 525, A99Google Scholar
Prantzos, N., 2008, Astron. Astroph., 489, 525Google Scholar
Read, J.I., Wilkinson, M.I., Evans, N.W., et al., 2006, MNRAS, 366, 429Google Scholar
Revaz, Y., Jablonka, P., Sawala, T., et al., 2009, Astron. Astroph., 501, 189Google Scholar
Salvadori, S., Ferrara, A., & Schneider, R., 2008, MNRAS, 386, 348Google Scholar
Searl, L., & Zinn, R., 1978, Astroph. J., 225, 357Google Scholar
Shetrone, M., Venn, K.A., Tolstoy, E., et al., 2003, Astron. J., 125, 688Google Scholar
Springel, V., White, S.D.M., Jenkins, A., et al., 2005, Nature, 435, 629CrossRefGoogle Scholar
Tolstoy, E., Venn, K.A., Shetrone, M., et al., 2003, Astron. J., 125, 707CrossRefGoogle Scholar
Tolstoy, E., Hill, V., & Tosi, M., 2009, Ann. Rev. A&A, 47, 371Google Scholar
Venn, K.A., Irwin, M., Shetrone, M.D., et al., 2004. Astron. J., 128, 1177Google Scholar
White, S.D.M., & Rees, M.J., 1978, MNRAS, 183, 341CrossRefGoogle Scholar