Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T18:30:50.369Z Has data issue: false hasContentIssue false

Dynamo Processes Constrained by Solar and Stellar Observations

Published online by Cambridge University Press:  27 November 2018

Maria A. Weber*
Affiliation:
Department of Astronomy and Astrophysics, University of Chicago Department of Astronomy, Adler Planetarium, Chicago, IL email: maweber@uchicago.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our understanding of stellar dynamos has largely been driven by the phenomena we have observed of our own Sun. Yet, as we amass longer-term datasets for an increasing number of stars, it is clear that there is a wide variety of stellar behavior. Here we briefly review observed trends that place key constraints on the fundamental dynamo operation of solar-type stars to fully convective M dwarfs, including: starspot and sunspot patterns, various magnetism-rotation correlations, and mean field flows such as differential rotation and meridional circulation. We also comment on the current insight that simulations of dynamo action and flux emergence lend to our working knowledge of stellar dynamo theory. While the growing landscape of both observations and simulations of stellar magnetic activity work in tandem to decipher dynamo action, there are still many puzzles that we have yet to fully understand.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Augustson, K., Brun, A. S., Miesch, M., & Toomre, J., 2015, ApJ, 809, 149Google Scholar
Babcock, H. W., 1961, ApJ, 133, 572Google Scholar
Barnes, J. R., Jeffers, S. V., Jones, H. R. A., Pavlenko, Ya. V., Jenkins, J. S., Haswell, C. A., & Lohr, M. E., 2015, ApJ, 812, 42Google Scholar
Bohm-Vitense, E., 2007, ApJ, 657, 486Google Scholar
Brun, A. S. & Browning, M. K., 2017, LRSP, 14, 4Google Scholar
Browning, M. K., Weber, M. A., Chabrier, G., & Massey, A. P., 2016, ApJ, 818, 189Google Scholar
Christensen, U. R., Holzwarth, V., & Reiners, A., 2009, Nature, 457, 167Google Scholar
Dikpati, M. & Gilman, P. A., 2005, ApJL, 635, L193Google Scholar
Egeland, R., Soon, W., Baliunas, S., Hall, J. C., & Henry, G. W. 2017, Proc. IAUS 328, arXiv:1704.02388Google Scholar
Fan, Y., 2009, LRSP, 6, 4Google Scholar
Fan, Y. & Fang, F., 2014, ApJ, 789, 35Google Scholar
Featherstone, N. A. & Miesch, M. S., 2015, ApJ, 804, 67Google Scholar
Gastine, T., Morin, J., Duarte, L., Reiners, A., Christensen, U. R., & Wicht, J., 2013, A&A, 549, L5Google Scholar
Gastine, T., Yadav, R. K., Morin, J., Reiners, A., & Wicht, J., 2014, MNRAS, 438, L76-80Google Scholar
Guerrero, G., Smolarkiewicz, P. K., de Gouveia Dal Pino, E. M., Kosovichev, A. G., & Nansour, N. N., 2016, ApJ, 819, 104Google Scholar
Howe, R., 2009, LRSP, 6, 1Google Scholar
Jeffers, S. V., Schoefer, P., Lamert, A., Reiners, A., Montes, D., Caballero, J. A., et al. 2018, accepted to A&A, in press, arXiv:1802.02102Google Scholar
Jouve, L., Brown, B. P., & Brun, A. S., 2010, A&A, 509, A32Google Scholar
Kapyla, P. J., Mantere, M. J., Cole, E., Warnecke, J., & Brandenburg, A., 2013, ApJ, 778, 41Google Scholar
Karak, B. B. & Miesch, M., 2017, ApJ, 847, 69Google Scholar
Karak, B. B., Kapyla, P. J., Kapyla, M. J., Brandenburg, A., Olspert, N., & Pelt, J., 2015, A&A, 576, A26Google Scholar
Metcalfe, T. S. & van Saders, J., 2017, Sol. Phys., 292, 126Google Scholar
Miesch, M. S., Brun, A. S., & Toomre, J., 2006, ApJ, 641, 618Google Scholar
Morris, B. M., Hebb, L., Davenport, J. R. A., Rohn, G., & Hawley, S. L., 2017, ApJ, 846, 99Google Scholar
Nelson, N. J., Brown, B. P., Brun, A. S., & Miesch, M. S., Toomre, J., 2014, Sol. Phys., 289, 441Google Scholar
Reiners, A., Schuessler, M., & Passegger, V. M., 2014, ApJ, 794, 144Google Scholar
Reinhold, T. & Gizon, L., 2017, A&A, 583, 65Google Scholar
Schmidt, S. J., Hawley, S. L., West, A. A., Bochanski, J. J., Davenport, J. R. A., Ge, J., & Schneider, D. P., 2015, AJ, 149, 158Google Scholar
Schuessler, M., Caligari, P., Ferriz-Mas, A., Solanki, S. K., & Stix, M., 1996, ApJ, 314, 503Google Scholar
See, V., Jardine, M., Vidotto, A. A., Donati, J. F., Boro Saikia, S., Bouvier, J., et al. 2016, MNRAS, 462, 4442Google Scholar
Shulyak, D., Reiners, A., Engeln, A., Malo, L., Yadav, R., Morin, J., & Kochukhov, O., 2017, Natr. Astron., 1, 184Google Scholar
Strassmeier, K. G., 2009, A&A Rev., 17, 251Google Scholar
Strugarek, A., Beaudoin, P., Charbonneau, P., Brun, A. S., & do Nascimento, J. D. Jr, 2017, Science, 357, 185Google Scholar
Viviani, M., Warnecke, J., Kapyla, M. J., Kapyla, P. J., Olpert, N., Cole-Kodikara, E. M., et al. 2017, submitted, arXiv:1710.10222Google Scholar
Weber, M. A. & Browning, M. K., 2016, ApJ, 827, 95Google Scholar
Weber, M. A., Fan, Y., & Miesch, M., 2013a, ApJ, 770, 149Google Scholar
Weber, M. A., Fan, Y., & Miesch, M., 2013b, Sol. Phys., 287, 239Google Scholar
Wright, N. J., Drake, J. J., Mamajek, E. E., & Henry, G. W., 2013, AN, 334, 151Google Scholar
Wright, N. J. & Drake, J. J., 2016, Nature, 535, 526Google Scholar
Yadav, R. K., Gastine, T., Christensen, U. R., & Reiners, A., 2015, A&A, 573, A68Google Scholar
Yang, H., Jifeng, L., Gao, Q., Fang, X., Guo, J., Zhang, Y., et al. 2017, ApJ, 849, 36Google Scholar
Zhao, H., Bogart, R. S., Kosovichev, A. G., Duvall, T. L., & Hartlep, T., 2013, ApJL, 774, L29Google Scholar