Skip to main content Accessibility help
×
Home

Dynamics of planetesimals: the role of two-body relaxation

Published online by Cambridge University Press:  28 February 2005

Eiichiro Kokubo
Affiliation:
National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo, Japan email: kokubo@th.nao.ac.jp
Rights & Permissions[Opens in a new window]

Abstract

In the standard scenario of planet formation, solid planets are formed through accretion of small bodies called planetesimals. The dynamics of planetesimals is important since it controls their growth mode and timescale. Here, I briefly explain the basic dynamics of planetesimals due to the two-body gravitational relaxation process. The important roles of two-body relaxation in a planetesimal system are viscous stirring and dynamical friction. Due to viscous stirring, the random velocities (eccentricities and inclinations) of planetesimals increase, while dynamical friction realizes the energy equipartition of the random energy. I also explain the orbital repulsion of protoplanets which is the coupling effect of two-body scattering and dynamical friction.To search for other articles by the author(s) go to: http://adsabs.harvard.edu/abstract_service.html

Type
Contributed Papers
Copyright
© 2005 International Astronomical Union

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 84 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 24th January 2021. This data will be updated every 24 hours.

Access
Hostname: page-component-76cb886bbf-gtgjg Total loading time: 0.222 Render date: 2021-01-24T18:41:13.621Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Dynamics of planetesimals: the role of two-body relaxation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Dynamics of planetesimals: the role of two-body relaxation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Dynamics of planetesimals: the role of two-body relaxation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *