Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-20T07:46:35.076Z Has data issue: false hasContentIssue false

The Diversity of Low-mass Exoplanets Characterized via Transit Timing

Published online by Cambridge University Press:  27 October 2016

Daniel Jontof-Hutter
Affiliation:
Dept. of Astronomy, Pennsylvania State University, University Park, PA-16802, United States email: dxj14@psu.edu
Eric B. Ford
Affiliation:
Dept. of Astronomy, Pennsylvania State University, University Park, PA-16802, United States email: dxj14@psu.edu
Jason F. Rowe
Affiliation:
Université de Montréal
Jack. J. Lissauer
Affiliation:
NASA Ames Research Center
Daniel C. Fabrycky
Affiliation:
University of Chicago
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Transit timing variations (TTV) in multi-transiting systems enables precise characterizations of low-mass planets and their orbits. The range of orbital periods and incident fluxes with detailed TTV constraints complements the radial velocity sample for low-mass planets, pushing exoplanet characterization to the regime sub-Earth size planets and out to Mercury-like distances. This has revealed an astonishing diversity in the density of super-Earth mass planets. We summarize these and other contributions to exoplanet science from TTVs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Agol, E. & Deck, K. 2015, ArXiv e-printsGoogle Scholar
Agol, E., Steffen, J., Sari, R., & Clarkson, W. 2005, MNRAS, 359, 567 Google Scholar
Barros, S. C. C., et al. 2014, A&A, 561, L1 Google Scholar
Batalha, N. M., et al. 2011, ApJ, 729, 27 Google Scholar
Borucki, W., et al. 2008, in IAU Symposium, Vol. 249, IAU Symposium, ed. Sun, Y.-S., Ferraz-Mello, S., & Zhou, J.-L., 17–24Google Scholar
Carter, J. A., et al. 2012, Science, 337, 556 Google Scholar
Cochran, W. D., et al. 2011, ApJS, 197, 7 Google Scholar
Deck, K. M. & Agol, E. 2015, ApJ, 802, 116 CrossRefGoogle Scholar
Dressing, C. D., et al. 2015, ApJ, 800, 135 CrossRefGoogle Scholar
Dumusque, X., et al. 2014, ApJ, 789, 154 Google Scholar
Fabrycky, D. C., et al. 2012, ApJ, 750, 114 Google Scholar
Fabrycky, D. C., et al. 2014, ApJ, 790, 146 CrossRefGoogle Scholar
Ford, E. B., et al. 2011, ApJS, 197, 2 Google Scholar
Ford, E. B., et al. 2012a, ApJ, 750, 113 Google Scholar
Ford, E. B., et al. 2012b, ApJ, 756, 185 Google Scholar
Fortney, J. J., Marley, M. S., & Barnes, J. W. 2007, ApJ, 659, 1661 Google Scholar
Gautier, T. N. III, et al. 2012, ApJ, 749, 15 Google Scholar
Gilliland, R. L., et al. 2013, ApJ, 766, 40 Google Scholar
Gillon, M., et al. 2012, A&A, 539, A28 Google Scholar
Hadden, S. & Lithwick, Y. 2014, ApJ, 787, 80 CrossRefGoogle Scholar
Haywood, R. D., et al. 2014, MNRAS, 443, 2517 Google Scholar
Holman, M. J. & Murray, N. W. 2005, Science, 307, 1288 Google Scholar
Holman, M. J., et al. 2010, Science, 330, 51 CrossRefGoogle Scholar
Howard, A. W., et al. 2013, Nature, 503, 381 CrossRefGoogle Scholar
Jontof-Hutter, D., Lissauer, J. J., Rowe, J. F., & Fabrycky, D. C. 2014, ApJ, 785, 15 Google Scholar
Jontof-Hutter, D., Lissauer, J. J., Rowe, J. F., & Fabrycky, D. C. 2015, Nature, 785, 15 Google Scholar
Jontof-Hutter, D., Lissauer, J. J., Rowe, J. F., & Fabrycky, D. C. 2015, ApJ submittedGoogle Scholar
Kipping, D. M. 2010, MNRAS, 407, 301 CrossRefGoogle Scholar
Kipping, D. M., Nesvorný, D., Buchhave, L. A., Hartman, J., Bakos, G. Á., & Schmitt, A. R. 2014, ApJ, 784, 28 CrossRefGoogle Scholar
Lissauer, J. J., et al. 2011a, Nature, 470, 53 Google Scholar
Lissauer, J. J., et al. 2011b, ApJS, 197, 8 CrossRefGoogle Scholar
Lissauer, J. J., et al. 2013, ApJ, 770, 131 Google Scholar
Lissauer, J. J., et al. 2014, ApJ, 784, 44 Google Scholar
Lithwick, Y. & Wu, Y. 2012, ApJL, 756, L11 CrossRefGoogle Scholar
Lithwick, Y., Xie, J., & Wu, Y. 2012, ApJ, 761, 122 CrossRefGoogle Scholar
Lopez, E. D., & Fortney, J. J. 2013a, ApJ, 776, 2 CrossRefGoogle Scholar
Marcy, G. W., et al. 2014, ApJS, 210, 20 Google Scholar
Masuda, K. 2014, ApJ, 783, 53 Google Scholar
Masuda, K., Hirano, T., Taruya, A., Nagasawa, M., & Suto, Y. 2013, ApJ, 778, 185 Google Scholar
Mazeh, T., et al. 2013, ApJS, 208, 16 Google Scholar
Nesvorný, D. & Morbidelli, A. 2008, ApJ, 688, 636 Google Scholar
Nesvorný, D., Kipping, D. M., Buchhave, L. A., Bakos, G. Á., Hartman, J., & Schmitt, A. R. 2012, Science, 336, 1133 Google Scholar
Nesvorný, D., Kipping, D., Terrell, D., Hartman, J., Bakos, G. Á., & Buchhave, L. A. 2013, ApJ, 777, 3 Google Scholar
Nesvorný, D. & Vokrouhlický, D. 2014, ApJ, 790, 58 Google Scholar
Ofir, A., Dreizler, S., Zechmeister, M., & Husser, T.-O. 2014, A&A, 561, A103 Google Scholar
Owen, J. E. & Jackson, A. P. 2012, MNRAS, 425, 2931 Google Scholar
Owen, J. E. & Wu, Y. 2013, ApJ, 775, 105 Google Scholar
Pepe, F., et al. 2013, Nature, 503, 377 Google Scholar
Ragozzine, D. & Holman, M. J. 2010, ArXiv e-printsGoogle Scholar
Rogers, L. A. 2015, ApJ, 801, 41 Google Scholar
Rowe, J. F., et al. 2014, ApJ, 784, 45 Google Scholar
Sanchis-Ojeda, R., et al. 2012, Nature, 487, 449 Google Scholar
Seager, S. & Mallén-Ornelas, G. 2003, ApJ, 585, 1038 Google Scholar
Steffen, J. H., et al. 2012a, MNRAS, 421, 2342 Google Scholar
Steffen, J. H., et al. 2013, MNRAS, 428, 1077 Google Scholar
Weiss, L. M., et al. 2013, ApJ, 768, 14 CrossRefGoogle Scholar
Wu, Y. & Lithwick, Y. 2013, ApJ, 772, 74 Google Scholar
Xie, J.-W. 2013, ApJS, 208, 22 Google Scholar