Skip to main content Accessibility help
×
Home

The discovery of X-ray binaries in the Sculptor Dwarf Spheroidal Galaxy

Published online by Cambridge University Press:  12 May 2006

Thomas J. Maccarone
Affiliation:
School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK email: tjm@phys.soton.ac.uk
Arunav Kundu
Affiliation:
Department of Physiscs and Astronomy, Michigan State University, East Lansing, MI, USA
Stephen E. Zepf
Affiliation:
Department of Physiscs and Astronomy, Michigan State University, East Lansing, MI, USA
Anthony L. Piro
Affiliation:
Department of Physics, University of California at Santa Barbara, Santa Barbara, CA, USA
Lars Bildsten
Affiliation:
Department of Physics, University of California at Santa Barbara, Santa Barbara, CA, USA Kavli Institute for Theoretical Physics, University of California at Santa Barbara, Santa Barbara, CA, USA
Rights & Permissions[Opens in a new window]

Abstract

We report the results of a deep Chandra survey of the Sculptor dwarf spheroidal galaxy. We find five X-ray sources with $L_X$ of at least $6\times10^{33}$ ergs/sec with optical counterparts establishing them as members of Sculptor. These X-ray luminosities indicate that these sources are X-ray binaries, as no other known class of Galactic point sources can reach 0.5-8 keV luminosities this high. Finding these systems proves definitively that such objects can exist in an old stellar population without stellar collisions. Three of these objects have highly evolved optical counterparts (giants or horizontal branch stars), as do three other sources whose X-ray luminosities are in the range which includes both quiescent low mass X-ray binaries and the brightest magnetic cataclysmic variables. We predict that large area surveys of the Milky Way should also turn up large numbers of quiescent X-ray binaries.

Type
Contributed Papers
Copyright
2006 International Astronomical Union

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 54 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th January 2021. This data will be updated every 24 hours.

Access
Hostname: page-component-898fc554b-sztd2 Total loading time: 0.223 Render date: 2021-01-26T09:59:00.170Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The discovery of X-ray binaries in the Sculptor Dwarf Spheroidal Galaxy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The discovery of X-ray binaries in the Sculptor Dwarf Spheroidal Galaxy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The discovery of X-ray binaries in the Sculptor Dwarf Spheroidal Galaxy
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *