Skip to main content Accessibility help
×
Home

The debris disk – terrestrial planet connection

  • Sean N. Raymond (a1) (a2), Philip J. Armitage (a3) (a4), Amaya Moro-Martín (a5) (a6), Mark Booth (a7), Mark C. Wyatt (a7), John C. Armstrong (a8), Avi M. Mandell (a9) and Franck Selsis (a1) (a2)...

Abstract

The eccentric orbits of the known extrasolar giant planets provide evidence that most planet-forming environments undergo violent dynamical instabilities. Here, we numerically simulate the impact of giant planet instabilities on planetary systems as a whole. We find that populations of inner rocky and outer icy bodies are both shaped by the giant planet dynamics and are naturally correlated. Strong instabilities – those with very eccentric surviving giant planets – completely clear out their inner and outer regions. In contrast, systems with stable or low-mass giant planets form terrestrial planets in their inner regions and outer icy bodies produce dust that is observable as debris disks at mid-infrared wavelengths. Fifteen to twenty percent of old stars are observed to have bright debris disks (at λ ~ 70μm) and we predict that these signpost dynamically calm environments that should contain terrestrial planets.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The debris disk – terrestrial planet connection
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The debris disk – terrestrial planet connection
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The debris disk – terrestrial planet connection
      Available formats
      ×

Copyright

References

Hide All
Adams, F. C. & Laughlin, G. 2003, Icarus, 163, 290
Booth, M., Wyatt, M. C., Morbidelli, A., Moro-Martín, A., & Levison, H. F. 2009, MNRAS, 399, 385
Butler, R. P., et al. 2006, ApJ, 646, 505
Carpenter, J. M., et al. 2009, ApJS, 181, 197
Chambers, J. E. 1999, MNRAS, 304, 793
Chambers, J. E., Wetherill, G. W., & Boss, A. P. 1996, Icarus, 119, 261
Chambers, J. E. 2004, Earth and Planetary Science Letters, 223, 241
Chatterjee, S., Ford, E. B., Matsumura, S., & Rasio, F. A. 2008, ApJ, 686, 580
Dohnanyi, J. S. 1969, JGR, 74, 2531
Fogg, M. J. & Nelson, R. P. 2007, A&A, 461, 1195
Haisch, K. E. Jr., Lada, E. A., & Lada, C. J. 2001, ApJL, 553, L153
Howard, A. W., et al. 2010, Science, 330, 653
Iwasaki, K., Tanaka, H., Nakazawa, K., & Hiroyuki, E. 2001, PASJ, 53, 321
Jurić, M. & Tremaine, S. 2008, ApJ, 686, 603
Kenyon, S. J. & Bromley, B. C. 2006, AJ, 131, 1837
Kenyon, S. J. & Luu, J. X. 1998, AJ, 115, 2136
Mandell, A. M., Raymond, S. N., & Sigurdsson, S. 2007, ApJ, 660, 823
Marzari, F. & Weidenschilling, S. J. 2002, Icarus, 156, 570
Mayor, M., et al. 2009, A&A, 507, 487
Morbidelli, A., Brasser, R., Gomes, R., Levison, H. F., & Tsiganis, K. 2010, AJ, 140, 1391
Moro-Martín, A., et al. 2007, ApJ, 658, 1312
Moro-Martín, A., Malhotra, R., Bryden, G., Rieke, G. H., Su, K. Y. L., Beichman, C. A., & Lawler, S. M. 2010, ApJ, 717, 1123
Rasio, F. A. & Ford, E. B. 1996, Science, 274, 954
Raymond, S. N., Armitage, P. J., & Gorelick, N. 2010, ApJ, 711, 772
Raymond, S. N., Mandell, A. M., & Sigurdsson, S. 2006, Science, 313, 1413
Raymond, S. N., O'Brien, D. P., Morbidelli, A., & Kaib, N. A. 2009, Icarus, 203, 644
Raymond, S. N., Quinn, T., & Lunine, J. I. 2004, Icarus, 168, 1
Spiegel, D. S., Raymond, S. N., Dressing, C. D., Scharf, C. A., & Mitchell, J. L. 2010, ApJ, 721, 1308
Trilling, D. E., et al. 2008, ApJ, 674, 1086
Veras, D. & Armitage, P. J. 2006, ApJ, 645, 1509
Weidenschilling, S. J. & Marzari, F. 1996, Nature, 384, 619
Wyatt, M. C. 2008, ARA&A, 46, 339
Zakamska, N. L., Pan, M., & Ford, E. B. 2011, MNRAS, 410, 1895
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

The debris disk – terrestrial planet connection

  • Sean N. Raymond (a1) (a2), Philip J. Armitage (a3) (a4), Amaya Moro-Martín (a5) (a6), Mark Booth (a7), Mark C. Wyatt (a7), John C. Armstrong (a8), Avi M. Mandell (a9) and Franck Selsis (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.