Skip to main content Accessibility help
×
Home

The cosmic web in CosmoGrid void regions

  • Steven Rieder (a1) (a2), Rien van de Weygaert (a1), Marius Cautun (a1) (a3), Burcu Beygu (a1) and Simon Portegies Zwart (a2)...

Abstract

We study the formation and evolution of the cosmic web, using the high-resolution CosmoGrid ΛCDM simulation. In particular, we investigate the evolution of the large-scale structure around void halo groups, and compare this to observations of the VGS-31 galaxy group, which consists of three interacting galaxies inside a large void.

The structure around such haloes shows a great deal of tenuous structure, with most of such systems being embedded in intra-void filaments and walls. We use the Nexus+} algorithm to detect walls and filaments in CosmoGrid, and find them to be present and detectable at every scale. The void regions embed tenuous walls, which in turn embed tenuous filaments. We hypothesize that the void galaxy group of VGS-31 formed in such an environment.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The cosmic web in CosmoGrid void regions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The cosmic web in CosmoGrid void regions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The cosmic web in CosmoGrid void regions
      Available formats
      ×

Copyright

References

Hide All
Aragon-Calvo, M. A. & Szalay, A. S.. The hierarchical structure and dynamics of voids. MNRAS, 428: 3409–3424, February 2013.
Aragón-Calvo, M. A., Jones, B. J. T., van de Weygaert, R., & van der Hulst, J. M.. The multiscale morphology filter: identifying and extracting spatial patterns in the galaxy distribution. A&A, 474: 315–338, October 2007.
Aragon-Calvo, M. A., van de Weygaert, R., Araya-Melo, P. A., Platen, E., & Szalay, A. S.. Unfolding the hierarchy of voids. MNRAS, 404: L89–L93, May 2010.
Beygu, B., Kreckel, K., van de Weygaert, R., van der Hulst, J. M., & van Gorkom, J. H.. An Interacting Galaxy System along a Filament in a Void. AJ, 145: 120, May 2013.
Bond, J. R., Kofman, L., & Pogosyan, D.. How filaments of galaxies are woven into the cosmic web. Nature, 380: 603–606, April 1996.
Cautun, M., van de Weygaert, R., & Jones, B. J. T.. NEXUS: tracing the cosmic web connection. MNRAS, 429: 1286–1308, February 2013.
Cautun, M., van de Weygaert, R., Jones, B. J. T., & Frenk, C. S.. Evolution of the cosmic web. MNRAS, 441: 2923–2973, July 2014.
Cautun, M. C. & van de Weygaert, R.. The DTFE public software - The Delaunay Tessellation Field Estimator code. arXiv:1105.0370, May 2011.
Groen, D., Portegies Zwart, S., Ishiyama, T., & Makino, J.. High-performance gravitational N-body simulations on a planet-wide-distributed supercomputer. Computational Science and Discovery, 4 (1): 015001–+, January 2011.
Ishiyama, T., Fukushige, T., & Makino, J.. GreeM: Massively Parallel TreePM Code for Large Cosmological N -body Simulations. PASJ, 61: 1319–, December 2009.
Ishiyama, T., Rieder, S., Makino, J., Portegies Zwart, S., Groen, D., Nitadori, K., de Laat, C., McMillan, S., Hiraki, K., & Harfst, S.. The Cosmogrid Simulation: Statistical Properties of Small Dark Matter Halos. ApJ, 767: 146, April 2013.
Kreckel, K., Platen, E., Aragón-Calvo, M. A., van Gorkom, J. H., van de Weygaert, R., van der Hulst, J. M., Kovač, K., Yip, C.-W., & Peebles, P. J. E.. Only the Lonely: H I Imaging of Void Galaxies. AJ, 141: 4, January 2011.
Kreckel, K., Platen, E., Aragón-Calvo, M. A., van Gorkom, J. H., van de Weygaert, R., van der Hulst, J. M., & Beygu, B.. The Void Galaxy Survey: Optical Properties and H I Morphology and Kinematics. AJ, 144: 16, July 2012.
Pelupessy, F. I., van Elteren, A., de Vries, N., McMillan, S. L. W., Drost, N., & Portegies Zwart, S. F.. The Astrophysical Multipurpose Software Environment. A&A, 557: A84, September 2013.
Portegies Zwart, S., Ishiyama, T., Groen, D., Nitadori, K., Makino, J., de Laat, C., McMillan, S., Hiraki, K., Harfst, S., & Grosso, P.. Simulating the universe on an intercontinental grid of supercomputers. IEEE Computer, v.43, No.8, p.63-70, 43: 63–70, October 2010.
Portegies Zwart, S., McMillan, S. L. W., van Elteren, E., Pelupessy, I., & de Vries, N.. Multi-physics simulations using a hierarchical interchangeable software interface. Computer Physics Communications, 183: 456–468, March 2013.
Rieder, S., van de Weygaert, R., Cautun, M., Beygu, B., & Portegies Zwart, S.. Assembly of filamentary void galaxy configurations. MNRAS, 435: 222–241, October 2013.
Schaap, W. E. & van de Weygaert, R.. Continuous fields and discrete samples: reconstruction through Delaunay tessellations. A&A, 363: L29–L32, November 2000.
Sheth, R. K. & van de Weygaert, R.. A hierarchy of voids: much ado about nothing. MNRAS, 350: 517–538, May 2004.
van de Weygaert, R. & Platen, E.. Cosmic Voids: Structure, Dynamics and Galaxies. International Journal of Modern Physics Conference Series, 1: 4166, 2011.
van de Weygaert, R. & Schaap, W.. The Cosmic Web: Geometric Analysis. In Martínez, V. J., Saar, E., Martínez-González, E., and Pons-Bordería, M.-J., editors, Data Analysis in Cosmology, volume 665 of Lecture Notes in Physics, Berlin Springer Verlag, pages 291413, 2009.
van de Weygaert, R. & van Kampen, E.. Voids in Gravitational Instability Scenarios - Part One - Global Density and Velocity Fields in an Einstein - De-Sitter Universe. MNRAS, 263: 481, July 1993.
Zeldovich, I. B., Einasto, J., & Shandarin, S. F.. Giant voids in the universe. Nature, 300: 407–413, December 1982.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

The cosmic web in CosmoGrid void regions

  • Steven Rieder (a1) (a2), Rien van de Weygaert (a1), Marius Cautun (a1) (a3), Burcu Beygu (a1) and Simon Portegies Zwart (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed