Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T22:48:03.068Z Has data issue: false hasContentIssue false

Contributions to the Galactic halo from in-situ, kicked-out, and accreted stars

Published online by Cambridge University Press:  09 May 2016

Allyson A. Sheffield
Affiliation:
LaGuardia Community College, City University of New York, Department of Natural Sciences, 31-10 Thomson Ave., Long Island City, NY, 11101, USA email: asheffield@lagcc.cuny.edu
Kathryn V. Johnston
Affiliation:
Columbia University, Dept. of Astronomy, Mail Code 5246, New York, NY, 10027, USA
Katia Cunha
Affiliation:
Observatório Nacional, Rua General José Cristino, 77, 20921-400 São Cristóvão, Rio de Janeiro, RJ, Brazil
Verne V. Smith
Affiliation:
National Optical Astronomy Observatories, Tucson, AZ, 98765, USA
Steven R. Majewski
Affiliation:
University of Virginia, Dept. of Astronomy, P.O. Box 400325, Charlottesville, VA, 22904, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report chemical abundances for a sample of 66 M giants with high S/N high-resolution spectroscopy in the inner halo of the Milky Way. The program giant stars have radial velocities that vary significantly from those expected for stars moving on uniform circular orbits in the Galactic disk. Thus, based on kinematics, we expect a sample dominated by halo stars. Abundances are derived for α-elements and neutron capture elements. By analyzing the multi-dimensional abundance space, the formation site of the halo giants – in-situ or accreted – can be assessed. Of particular interest are a class of stars that form in-situ, deep in the Milky Way's gravitational potential well, but are “kicked out” of the disk into the halo due to a perturbation event. We find: (1) our sample is dominated by accreted stars and (2) tentative evidence of a small kicked-out population in our Milky Way halo sample.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Dorman, C. E., Widrow, L. M., Guhathakurta, P., et al. 2013, ApJ, 779, 103CrossRefGoogle Scholar
Letarte, B., Hill, V., Tolstoy, E., et al. 2010, A&A, 523, A17Google Scholar
Majewski, S. R., Skrutskie, M. F., Weinberg, M. D., & Ostheimer, J. C. 2003, ApJ, 599, 1082CrossRefGoogle Scholar
Nissen, P. E. & Schuster, W. J. 2010, A&A, 511, L10Google Scholar
Nissen, P. E. & Schuster, W. J. 2011, A&A, 530, A1Google Scholar
Pompéia, L., Hill, V., Spite, M., et al. 2008, A&A, 480, 379Google Scholar
Price-Whelan, A. M., Johnston, K. V., Sheffield, A. A., Laporte, C. F. P., & Sesar, B. 2015, MNRAS, 452, 676CrossRefGoogle Scholar
Read, J. I., Lake, G., Agertz, O., & Debattista, V. P. 2008, MNRAS, 389, 1041CrossRefGoogle Scholar
Sharma, S., Johnston, K. V., Majewski, S. R., Bullock, J., & Muñoz, R. R. 2011, ApJ, 728, 106CrossRefGoogle Scholar
Sheffield, A. A., Majewski, S. R., Johnston, K. V., et al. 2012, ApJ, 761, 161CrossRefGoogle Scholar
Tissera, P. B., Scannapieco, C., Beers, T. C., & Carollo, D. 2013, MNRAS, 432, 3391CrossRefGoogle Scholar
Xu, Y., Newberg, H. J., Carlin, J. L., et al. 2015, ApJ, 801, 105CrossRefGoogle Scholar