Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T15:00:39.079Z Has data issue: false hasContentIssue false

Constraints from zoom-in simulations on the protostellar accretion process

Published online by Cambridge University Press:  13 January 2020

Michael Kuffmeier*
Affiliation:
Institute for Theoretical Astrophysics (ITA), Zentrum für Astronomie (ZAH), University of Heidelberg, Albert-Ueberle-Straße 2, DE-69120, Heidelberg, Germany email: ru151@uni-heidelberg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stars are embedded in different environments of Giant Molecular Clouds during their formation phase. Despite this fact, it is common practice to assume an isolated spherical core as the initial condition for models of individual star formation. To avoid the uncertainties of initial and boundary conditions, we use an alternative approach of zoom-in simulations to account for the environment in which protostars form. Our models show that injections of 26Al from a close-by supernova into the young solar system were highly unlikely. Moreover, we find that the accretion process of protostars is heterogeneous and environment-dependent.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020 

Footnotes

International Postdoctoral Fellow of Independent Research Fund Denmark (IRDF)

References

André, P., Men’shchikov, A., Bontemps, S. et al., 2010, A&A, 518, L102 Google Scholar
Bate, M. R., 2018, MNRAS, 475, 5618 CrossRefGoogle Scholar
Federrath, C., 2016, MNRAS, 457, 375 CrossRefGoogle Scholar
Fromang, S., Hennebelle, P. & Teyssier, R., 2006, A&A, 457, 371 Google Scholar
Haugboelle, T., Grassi, T., Frostholm Mogensen, T. et al. 2017, LPI Contributions, 1975, 2025 Google Scholar
Haugbølle, T., Padoan, P. & Nordlund, Å., 2018, ApJ, 854, 35 CrossRefGoogle Scholar
Hennebelle, P., Commerçon, B., Chabrier, G. et al., 2016, ApJL 830, L8 CrossRefGoogle Scholar
Kööp, L., Nakashima, D., Heck, P. R. et al., 2018, Geochimica et Cosmochimica Acta, 221, 296 CrossRefGoogle Scholar
Kuffmeier, M., Frostholm Mogensen, T., Haugbølle, T. et al., 2016, ApJ, 826, 22 CrossRefGoogle Scholar
Kuffmeier, M., Haugbølle, T. & Nordlund, Å., 2018, ApJ, 846, 7 CrossRefGoogle Scholar
Kuffmeier, M. & Nauman, F., 2017, arXiv:1710.11195, arXiv preprintGoogle Scholar
Kuffmeier, M., Frimann, S., Jensen, S. S. et al., 2018, MNRAS, 475, 2642 CrossRefGoogle Scholar
Larsen, K. K., Trinquier, A., Paton, C. et al., 2011, ApJL, 735, L37 CrossRefGoogle Scholar
Larson, R. B., 1969, MNRAS, 145, 271 CrossRefGoogle Scholar
Machida, M. N., Inutsuka, S.-i. & Matsumoto, T., 2007, ApJ, 670, 1198 CrossRefGoogle Scholar
MacPherson, G. J., Davis, A. M. & Zinner, E. K., 1995, Meteoritics, 30, 365 CrossRefGoogle Scholar
Masson, J., Chabrier, G., Hennebelle, P. et al., 2016, A&A, 587, 20 Google Scholar
Padoan, P., Haugbølle, T. & Nordlund, Å., 2014, ApJ, 797, 32 CrossRefGoogle Scholar
Offner, S. S. R., Kratter, K. M., Matzner, C. D. et al., 2016, ApJ, 725, 1485 CrossRefGoogle Scholar
Offner, S. S. R., Dunham, M. M., Lee, K. I. et al., 2016, ApJL, 827, L11 CrossRefGoogle Scholar
Rivera-Ingraham, A., Ristorcelli, I., Juvela, M. et al., 2017, A&A, 601, A94 Google Scholar
Seifried, D., Banerjee, R., Pudritz, R. E. et al., 2013, MNRAS, 432, 3320 CrossRefGoogle Scholar
Shu, F. H., 1977, APJ, 214, 488 CrossRefGoogle Scholar
Shu, F. H., Adams, F. C., Lizano, S., 1987, ARAA, 25, 23 CrossRefGoogle Scholar
Teyssier, R., 2002, A&A, 385, 337 Google Scholar
Tobin, J. J., Looney, L. W., Li, Z.-Y. et al., 2018, ApJ, 867, 43 CrossRefGoogle Scholar
Tomida, K., Okuzumi, S., Machida, M. N., 2015, ApJ, 801, 117 CrossRefGoogle Scholar
Vaytet, N., Commerçon, B., Masson, J. et al., 2018, A&A, 615, 5 Google Scholar
Wurster, J., Bate, M. R. & Price, D. J., 2018, MNRAS, 475, 1859 CrossRefGoogle Scholar