Skip to main content Accessibility help
×
Home

Common envelope evolution of massive stars

  • Paul M. Ricker (a1), Frank X. Timmes (a2), Ronald E. Taam (a3) and Ronald F. Webbink (a1)

Abstract

The discovery via gravitational waves of binary black hole systems with total masses greater than 60Mʘ has raised interesting questions for stellar evolution theory. Among the most promising formation channels for these systems is one involving a common envelope binary containing a low metallicity, core helium burning star with mass ⁓30 – 40Mʘ and a black hole with mass ⁓30 – 40Mʘ. For this channel to be viable, the common envelope binary must eject more than half the giant star’s mass and reduce its orbital separation by as much as a factor of 80. We discuss issues faced in numerically simulating the common envelope evolution of such systems and present a 3D AMR simulation of the dynamical inspiral of a low-metallicity red supergiant with a massive black hole companion.

Copyright

References

Hide All
Abbott, B. P., et al. 2016, Phys. Rev. Lett., 116, 061102
Abbott, B. P., et al. 2017a, Phys. Rev. Lett., 118, 221101
Abbott, B. P., et al. 2017b, Phys. Rev. Lett., 119, 141101
Belczynski, K., et al. 2010, ApJ, 714, 1217
Belczynski, K., et al. 2016, Nature, 534, 512
Colella, P., & Woodward, P. R. 1984, J. Comp. Phys., 54, 174
Chamandy, L., et al. 2018, MNRAS, 480, 1898
Dubey, A., Reid, L. B., & Fisher, R. 2008, Phys. Scr., T132, 014046
Faber, J. A., & Rasio, F. A. 2000, Phys. Rev. D, 62, 064012
Ferguson, J. W., et al. 2005, ApJ, 623, 585
Fryxell, B., et al. 2000, ApJS, 131, 273
Iaconi, R., et al. 2017, MNRAS, 464, 4028
Iglesias, C. A., & Rogers, F. J. 1996, ApJ, 464, 943
Ivanova, N., et al. 2013, A&AR, 21, 59
Ivanova, N. 2018, ApJ, 858, L24
Jiang, Y.-F., et al. 2018, Nature, 561, 498
Kruckow, M. U., et al. 2016, A&A, 596, 58
Levermore, C. D., & Pomraning, G. C. 1981, ApJ, 248, 321
Lipunov, V. M., Postnov, K. A., & Prokhorov, M. E. 1997, MNRAS, 288, 245
Löhner, R. 1987, Comp. Meth. Appl. Mech. Eng., 61, 323
López-Cámara, D., De Colle, F., & Moreno Méndez, E. 2018, MNRAS, accepted (arXiv:1806.11115)
MacNeice, P., et al. 2000, Comp. Phys. Comm., 126, 330
Murguia-Berthier, A., et al. 2017, ApJ, 845, 173
Nandez, J. L. A., Ivanova, N., & Lombardi, J. C. 2015, MNRAS, 450, L39
Ohlmann, S. T., et al. 2016, ApJ, 816, L9
Ohlmann, S. T., et al. 2017, A&A, 599, A5
Passy, J.-C., et al. 2012, ApJ, 744, 52
Paxton, B., et al. 2011, ApJS, 192, 3
Paxton, B., et al. 2013, ApJS, 208, 4
Paxton, B., et al. 2015, ApJS, 220, 15
Paxton, B., et al. 2018, ApJS, 234, 34
Rasio, F. A., & Shapiro, S. L. 1992, ApJ, 401, 226
Ricker, P. M. 2008, ApJS, 176, 293
Ricker, P. M., & Taam, R. E. 2008, ApJ, 672, L41
Ricker, P. M., & Taam, R. E. 2012, ApJ, 746, 74
Soker, N. 2004, New Ast., 9, 399
Soker, N. 2017, MNRAS, 471, 4839
Soker, N., Grichener, A., & Sabach, E. 2018, ApJ, 863, L14
Tutukov, A. V., & Cherepashchuk, A. M. 2017, Astron. Rep., 61, 833
Tutukov, A., & Yungelson, L. 1973, Nauch. Inform., 27, 70
van den Heuvel, E. P. J., & De Loore, C. 1973, A&A, 25, 387
Webbink, R. F. 2008, in: Milone, E. F., Leahy, D. A., & Hobill, D. W. (eds.), Short-Period Binary Stars: Observations, Analyses, and Results (Springer: Berlin), p. 233
Whitehouse, S. C., Bate, M. R., & Monaghan, J. J. 2005, MNRAS, 364, 1367
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

Common envelope evolution of massive stars

  • Paul M. Ricker (a1), Frank X. Timmes (a2), Ronald E. Taam (a3) and Ronald F. Webbink (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.