Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T08:39:24.999Z Has data issue: false hasContentIssue false

Common Envelope Evolution: Implications for Post-AGB Stars and Planetary Nebulae

Published online by Cambridge University Press:  08 August 2017

J. Nordhaus*
Affiliation:
National Technical Institute for the Deaf, Rochester Institute of Technology, One Bausch and Lomb Dr., Rochester, NY 14623, USA email: nordhaus@astro.rit.edu Center for Computational Relativity and Gravitation, Rochester Institute of Technology, One Bausch and Lomb Dr., Rochester, NY 14623, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Common envelopes (CE) are of broad interest as they represent one method by which binaries with initially long-period orbits of a few years can be converted into short-period orbits of a few hours. Despite their importance, the brief lifetimes of CE phases make them difficult to directly observe. Nevertheless, CE interactions are potentially common, can produce a diverse array of nebular shapes, and can accommodate current post-AGB and planetary nebula outflow constraints. Here, I discuss ongoing theoretical and computational work on CEs and speculate on what lies ahead for determining accurate outcomes of this elusive phase of evolution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Blackman, E. G. & Lucchini, S., 2014, Mon. Not. R. Astron. Soc., 440, L16 CrossRefGoogle Scholar
Bujarrabal, V., Castro-Carrizo, A., Alcolea, J., & Sánchez Contreras, C., 2001, Astron. Astrophys., 377, 868 CrossRefGoogle Scholar
Chen, Z., Nordhaus, J., Frank, A., Blackman, E. G., & Balick, B., 2016, MNRAS, 460, 4182 CrossRefGoogle Scholar
Fabrycky, D. & Tremaine, S., 2007, ApJ, 669, 1298 CrossRefGoogle Scholar
Fujii, Y., Spiegel, D. S., Mroczkowski, T., et al. 2016, ApJ, 820, 122 CrossRefGoogle Scholar
Iaconi, R., Reichardt, T., Staff, J., et al. 2016, MNRAS, in press.Google Scholar
Nordhaus, J. & Blackman, E. G., 2006, MNRAS, 370, 2004 CrossRefGoogle Scholar
Nordhaus, J., Blackman, E. G., & Frank, A., 2007, MNRAS, 376, 599 CrossRefGoogle Scholar
Nordhaus, J., Spiegel, D. S., Ibgui, L., Goodman, J., & Burrows, A., 2010, MNRAS, 408, 631 CrossRefGoogle Scholar
Nordhaus, J., Wellons, S., Spiegel, D. S., Metzger, B. D., & Blackman, E. G., 2011, Proceedings of the National Academy of Science, 108, 3135 CrossRefGoogle Scholar
Nordhaus, J. & Spiegel, D. S., 2013, MNRAS, 432, 500 CrossRefGoogle Scholar
Ohlmann, S. T., Röpke, F. K., Pakmor, R., Springel, V., & Müller, E., 2016, MNRAS, 462, L121 CrossRefGoogle Scholar
Paczynski, B., 1976, Structure and Evolution of Close Binary Systems, 73, 75 CrossRefGoogle Scholar
Ricker, P. M. & Taam, R. E., 2012, ApJ, 746, 74 CrossRefGoogle Scholar