Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T12:36:32.872Z Has data issue: false hasContentIssue false

A cloud-cloud collision in Sgr B2? 3D simulations meet SiO observations

Published online by Cambridge University Press:  20 January 2023

Wladimir E. Banda-Barragán
Affiliation:
Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg, Germany email: wbanda@hs.uni-hamburg.de
Jairo Armijos-Abendaño
Affiliation:
Observatorio Astronómico de Quito, Escuela Politécnica Nacional, Interior del Parque La Alameda, 170136, Quito, Ecuador
Helga Dénes
Affiliation:
ASTRON - The Netherlands Institute for Radio Astronomy, NL-7991 PD Dwingeloo, The Netherlands

Abstract

We compare the properties of shocked gas in Sgr B2 with maps obtained from 3D simulations of a collision between two fractal clouds. In agreement with 13CO(1-0) observations, our simulations show that a cloud-cloud collision produces a region with a highly turbulent density substructure with an average . Similarly, our numerical multi-channel shock study shows that colliding clouds are efficient at producing internal shocks with velocities of 5 − 50 km s−1 and Mach numbers of ∼ 4 − 40, which are needed to explain the ∼ 10−9 SiO abundances inferred from our SiO(2-1) IRAM observations of Sgr B2. Overall, we find that both the density structure and the shocked gas morphology in Sgr B2 are consistent with a Myr-old cloud-cloud collision. High-velocity shocks are produced during the early stages of the collision and can ignite star formation, while moderate- and low-velocity shocks are important over longer time-scales and can explain the extended SiO emission in Sgr B2.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armijos-Abendaño, J., Banda-Barragán, W. E., Martín-Pintado, J., Dénes, H., Federrath, C., & Requena-Torres, M. A. 2020, Structure and kinematics of shocked gas in Sgr B2: further evidence of a cloud-cloud collision from SiO emission maps. MNRAS, 499(4), 49184939.CrossRefGoogle Scholar
Banda-Barragán, W. E., Brüggen, M., Federrath, C., Wagner, A. Y., Scannapieco, E., & Cottle, J. 2020, Shock-multicloud interactions in galactic outflows - I. Cloud layers with lognormal density distributions. MNRAS, 499(2), 21732195.Google Scholar
Banda-Barragán, W. E., Brüggen, M., Heesen, V., Scannapieco, E., Cottle, J., Federrath, C., & Wagner, A. Y. 2021, Shock-multicloud interactions in galactic outflows - II. Radiative fractal clouds and cold gas thermodynamics. MNRAS, 506(4), 56585680.Google Scholar
Binney, J., Gerhard, O. E., Stark, A. A., Bally, J., & Uchida, K. I. 1991, Understanding the kinematics of Galactic Centre gas. MNRAS, 252, 210.CrossRefGoogle Scholar
Boehle, A., Ghez, A. M., Schödel, R., Meyer, L., Yelda, S., Albers, S., Martinez, G. F., Becklin, E. E., & Do, T. 2016,. ApJ, 830, 17.Google Scholar
Crocker, R. M. 2012, Non-thermal insights on mass and energy flows through the Galactic Centre and into the Fermi bubbles. MNRAS, 423(4), 35123539.CrossRefGoogle Scholar
de Pree, C. G., Gaume, R. A., Goss, W. M., & Claussen, M. J. 1995, The Sagittarius B2 Starforming Region. II. High-Resolution H66 alpha Observations of Sagittarius B2 North. ApJ, 451, 284.CrossRefGoogle Scholar
Enokiya, R., Torii, K., & Fukui, Y. 2019,. Publ. Astron. Soc. Japan, 00, 1–16.Google Scholar
Gravity Collaboration, Abuter, R., Amorim, A., Bauböck, M., Berger, J. P., Bonnet, H., Brandner, W., Clénet, Y., Coudé Du Foresto, V., de Zeeuw, P. T., Dexter, J., Duvert, G., Eckart, A., Eisenhauer, F., Förster Schreiber, N. M., Garcia, P., Gao, F., Gendron, E., Genzel, R., Gerhard, O., Gillessen, S., Habibi, M., Haubois, X., Henning, T., Hippler, S., Horrobin, M., Jiménez-Rosales, A., Jocou, L., Kervella, P., Lacour, S., Lapeyrère, V., Le Bouquin, J. B., Léna, P., Ott, T., Paumard, T., Perraut, K., Perrin, G., Pfuhl, O., Rabien, S., Rodriguez Coira, G., Rousset, G., Scheithauer, S., Sternberg, A., Straub, O., Straubmeier, C., Sturm, E., Tacconi, L. J., Vincent, F., von Fellenberg, S., Waisberg, I., Widmann, F., Wieprecht, E., Wiezorrek, E., Woillez, J., & Yazici, S. 2019, A geometric distance measurement to the Galactic center black hole with 0.3% uncertainty. A&A, 625, L10.Google Scholar
Gusdorf, A., Pineau des Forêsts, G., Cabrit, S., & Flower, D. R. 2008,. A&A, 490, 695706.Google Scholar
Harada, N., Riquelme, D., Viti, S., Jiménez-Serra, I., Requena-Torres, M. A., Menten, K. M., Martín, S., Aladro, R., Martín-Pintado, J., & Hochgürtel, S. 2015,. A&A, 584, A102.Google Scholar
Hasegawa, T., Sato, F., Whiteoak, J. B., & Miyawaki, R. 1994,. ApJ, 429, L77L80.CrossRefGoogle Scholar
Henshaw, J. D., Longmore, S. N., Kruijssen, J. M. D., Davies, B., Bally, J., Barnes, A., Battersby, C., Burton, M., Cunningham, M. R., Dale, J. E., Ginsburg, A., Immer, K., Jones, P. A., Kendrew, S., Mills, E. A. C., Molinari, S., Moore, T. J. T., Ott, J., Pillai, T., Rathborne, J., Schilke, P., Schmiedeke, A., Testi, L., Walker, D., Walsh, A., & Zhang, Q. 2016, Molecular gas kinematics within the central 250 pc of the Milky Way. MNRAS, 457(3), 26752702.CrossRefGoogle Scholar
Jiménez-Serra, I., Caselli, P., Tan, J. C., Hernand ez, A. K., Fontani, F., Butler, M. J., & van Loo, S. 2010, Parsec-scale SiO emission in an infrared dark cloud. MNRAS, 406(1), 187196.Google Scholar
Kruijssen, J. M. D., Dale, J. E., & Longmore, S. N. 2015, The dynamical evolution of molecular clouds near the Galactic Centre - I. Orbital structure and evolutionary timeline. MNRAS, 447(2), 10591079.CrossRefGoogle Scholar
Louvet, F., Motte, F., Gusdorf, A., Nguyên Luong, Q., Lesaffre, P., Duarte-Cabral, A., Maury, A., Schneider, N., Hill, T., Schilke, P., & Gueth, F. 2016, Tracing extended low-velocity shocks through SiO emission. Case study of the W43-MM1 ridge. A&A, 595, A122.Google Scholar
Mehringer, D. M., Palmer, P., Goss, W. M., & Yusef-Zadeh, F. 1993,. ApJ, 412, 684695.Google Scholar
Molinari, S., Bally, J., Noriega-Crespo, A., Compiègne, M., Bernard, J. P., Paradis, D., Martin, P., Testi, L., & Barlow, M. 2011,. ApJ, 735, L33. CrossRefGoogle Scholar
Riener, M., Kainulainen, J., Henshaw, J. D., Orkisz, J. H., Murray, C. E., & Beuther, H. 2019, GAUSSPY+: A fully automated Gaussian decomposition package for emission line spectra. A&A, 628, A78.Google Scholar
Santa-Maria, M. G., Goicoechea, J. R., Etxaluze, M., Cernicharo, J., & Cuadrado, S. 2021, Submillimeter imaging of the Galactic Center starburst Sgr B2. Warm molecular, atomic, and ionized gas far from massive star-forming cores. A&A, 649, A32.Google Scholar
Sato, F., Hasegawa, T., Whiteoak, J. B., & Miyawaki, R. 2000,. ApJ, 535, 857868.CrossRefGoogle Scholar
Schilke, P., Walmsley, C. M., Pineau des Forets, G., & Flower, D. R. 1997, SiO production in interstellar shocks. A&A, 321, 293304.Google Scholar
Schmiedeke, A., Schilke, P., Möller, T., Sánchez-Monge, A., Bergin, E., Comito, C., Csengeri, T., Lis, D. C., & Molinari, S. 2016,. A&A, 588, A143.Google Scholar
Spergel, D. N. & Blitz, L. 1992, Extreme gas pressures in the galactic bulge. Nat, 357(6380), 665667.CrossRefGoogle Scholar
Torii, K., Hattori, Y., Hasegawa, K., Ohama, A., Haworth, T. J., Shima, K., Habe, A., Tachihara, K., Mizuno, N., Onishi, T., Mizuno, A., & Fukui, Y. 2017, Triggered O Star Formation in M20 via Cloud-Cloud Collision: Comparisons between High-resolution CO Observations and Simulations. ApJ, 835(2), 142.CrossRefGoogle Scholar
Tsuboi, M., Miyazaki, A., & Uehara, K. 2015,. Publ. Astron. Soc. Japan, 67, 90. CrossRefGoogle Scholar