Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-02T00:50:36.577Z Has data issue: false hasContentIssue false

China Space Station Telescope and Variable Star Studies

Published online by Cambridge University Press:  06 February 2024

Xiaodian Chen*
Affiliation:
CAS Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China School of Astronomy and Space Science, University of the Chinese Academy of Sciences, Beijing, China Department of Astronomy, China West Normal University, Nanchong 637009, China
Shu Wang
Affiliation:
CAS Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China School of Astronomy and Space Science, University of the Chinese Academy of Sciences, Beijing, China Department of Astronomy, China West Normal University, Nanchong 637009, China
Licai Deng
Affiliation:
CAS Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China School of Astronomy and Space Science, University of the Chinese Academy of Sciences, Beijing, China Department of Astronomy, China West Normal University, Nanchong 637009, China
Richard de Grijs
Affiliation:
School of Mathematical and Physical Sciences, Macquarie University, Balaclava Road, Sydney, NSW 2109, Australia Astrophysics and Space Technologies Research Centre, Macquarie University, Balaclava Road, Sydney, NSW 2109, Australia
Xiaoyue Zhou
Affiliation:
CAS Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
Xiaohan Chen
Affiliation:
CAS Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
Jianxing Zhang
Affiliation:
CAS Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China

Abstract

In the last five years, the number of periodic variable stars has increased by two million. We used the ZTF DR2 data to find and build a catalog that includes 780,000 periodic variable stars. These periodic variable stars were classified into 11 types, which greatly complemented the variable stars in Galactic disk. Based on the latest ZTF DR16 data, we found 2 million variable candidates. We trained a machine learner to classify variable stars, and the learner had a prediction accuracy of 94%. Using millions of variable stars, we carried out studies to optimize the period–luminosity relations and the Galactic structure and the extinction law. With the future China Space Station Telescope, millions of variable stars in the Local Group will be discovered. They help to study the structure of our Local Group and also to cross-check the distance ladders based on different variable stars.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcock, C., Akerlof, C.W., Allsman, R.A., et al. 1993, Nature, 365, 621 Google Scholar
Anderson, R.I., Saio, H., Ekström, S., Georgy, C., & Meynet, G. 2016, A&A, 591, A8 Google Scholar
Bellm, E.C., Kulkarni, S.R., Graham, M.J., et al. 2019, PASP, 131, 018002 Google Scholar
Bono, G., Marconi, M., Cassisi, S., et al. 2005, ApJ, 621, 966 Google Scholar
Cardelli, J.A., Clayton, G.C., & Mathis, J.S. : 1989, ApJ, 345, 245 Google Scholar
Chen, X., Wang, S., Deng, L., et al. 2018, ApJS, 237, 28 Google Scholar
Chen, X., Wang, S., Deng, L., et al. 2019, NatAs, 3, 320 Google Scholar
Chen, X., Wang, S., Deng, L., et al. 2020, ApJS, 249, 18 Google Scholar
Chen, X., Zhang, J., Wang, S., & Deng, L. 2023, NatAs, arXiv:2306.10708Google Scholar
Chrobáková, Ž., López-Corredoira, M. 2021, ApJ, 912, 130 Google Scholar
Clementini, G., Ripepi, V., Molinaro, R., et al. 2019, A&A, 622, A60 Google Scholar
Drake, A.J., Graham, M.J., Djorgovski, S.G., et al. 2014, ApJS, 213, 9 Google Scholar
Drake, A.J., Djorgovski, S.G., Catelan, M., et al. 2017, MNRAS, 469, 3688 Google Scholar
Heinze, A.N., Tonry, J.L., Denneau, L., et al. 2018, ApJ, 156, 241 Google Scholar
Jayasinghe, T., Kochanek, C.S., Stanek, K.Z., et al. 2018, MNRAS, 477, 3145 Google Scholar
Lebzelter, T., Mowlavi, N., Lecoeur-Taibi, I., et al. 2023, A&A, 674, A15 Google Scholar
Lomb, N.R. 1976, Ap&SS, 39, 447 Google Scholar
Majewski, S.R., Schiavon, R.P., Frinchaboy, P.M., et al. 2017, ApJ, 154, 94 Google Scholar
Minniti, D., Lucas, P.W., Emerson, J.P., et al. 2010, NewA, 15, 433.Google Scholar
Mowlavi, N., Lecoeur-Tabi, I., Lebzelter, T., et al. 2018, A&A, 618, A58 Google Scholar
Poggio, E., Drimmel, R., Andrae, R., et al. 2020, NatAs, 4, 590 Google Scholar
Pojmanski, G., Pilecki, B., and Szczygiel, D. 2005, AcA, 55, 275 Google Scholar
Rimoldini, L., Holl, B., Gavras, P., et al. 2023, A&A, 674, A14 Google Scholar
Ripepi, V., Molinaro, R., Musella, I., et al. 2019, A&A, 625, A14 Google Scholar
Scargle, J.D. 1982, ApJ, 263, 835 Google Scholar
Skowron, D. M., Skowron, J., Mróz, P., et al. 2019, Science, 365, 478 Google Scholar
Wang, S., Chen, X., de Grijs, R., et al. 2018, ApJ, 852, 78 Google Scholar
Wang, S., & Chen, X. 2019, ApJ, 877, 116 Google Scholar
Wang, S., & Chen, X. 2023, ApJ, 946, 43 Google Scholar
Wood, P. R., Alcock, C., Allsman, R. A., et al., 1999, IAUS, 191, 151 Google Scholar
Udalski, A., Szymanski, M., Kaluzny, J., et al. 1992, AcA, 42, 253 Google Scholar
Udalski, A., Szymański, M.K., and Szymański, G. 2015, AcA, 65, 1 Google Scholar
Zhou, X. & Chen, X. 2021, MNRAS, 504, 4768 Google Scholar