Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T14:15:20.576Z Has data issue: false hasContentIssue false

The Chemistry of Nearby Disks

Published online by Cambridge University Press:  27 January 2016

Karin I. Öberg*
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St, MS 16, Cambridge, MA 02138 email: koberg@cfa.harvard.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The gas and dust rich disks around young stars are the formation sites of planets. Observations of molecular trace species have great potential as probes of the disk structures and volatile compositions that together regulate planet formation. The disk around young star TW Hya has become a template for disk molecular studies due to a combination of proximity, a simple face-on geometry and richness in volatiles. It is unclear, however, how typical the chemistry of the TW disk is. In this proceeding, we review lessons learnt from exploring the TW Hya disk chemistry, focusing on the CO snowline, and on deuterium fractionation chemistry. We compare these results with new ALMA observations toward more distant, younger disks. We find that while all disks have some chemical structures in common, there are also substantial differences between the disks, which may be due to different initial conditions, structural or chemical evolutionary stages, or a combination of all three.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Andrews, S. M., Rosenfeld, K. A., Kraus, A. L., & Wilner, D. J. 2013, ApJ, 771, 129Google Scholar
Bergin, E. A., Alves, J., Huard, T., & Lada, C. J. 2002, ApJL, 570, L101Google Scholar
Bergin, E. A., Cleeves, L. I., Gorti, U., et al. 2013, Nature, 493, 644Google Scholar
Caselli, P., Walmsley, C. M., Tafalla, M., Dore, L., & Myers, P. C. 1999, ApJL, 523, L165CrossRefGoogle Scholar
Chiang, E. & Youdin, A. N. 2010, Annual Review of Earth and Planetary Sciences, 38, 493Google Scholar
Ciesla, F. J. & Cuzzi, J. N. 2006, Icarus, 181, 178Google Scholar
Cleeves, L. I., Bergin, E. A., Alexander, C. M. O., et al. 2014, Science, 345, 1590CrossRefGoogle Scholar
Collings, M. P., Anderson, M. A., Chen, R., et al. 2004, MNRAS, 354, 1133CrossRefGoogle Scholar
Dressing, C. D. & Charbonneau, D. 2015, ArXiv e-printsGoogle Scholar
Favre, C., Cleeves, L. I., Bergin, E. A., Qi, C., & Blake, G. A. 2013, ApJL, 776, L38CrossRefGoogle Scholar
Gundlach, B., Kilias, S., Beitz, E., & Blum, J. 2011, Icarus, 214, 717CrossRefGoogle Scholar
Hartogh, P., Lis, D. C., Bockelée-Morvan, D., et al. 2011, Nature, 478, 218Google Scholar
Johansen, A., Oishi, J. S., Low, M.-M. M., et al. 2007, Nature, 448, 1022CrossRefGoogle Scholar
Jørgensen, J. K. 2004, A&A, 424, 589Google Scholar
Kastner, J. H., Zuckerman, B., Weintraub, D. A., & Forveille, T. 1997, Science, 277, 67Google Scholar
Mathews, G. S., Klaassen, P. D., Juhász, A., et al. 2013, A&A, 557, A132Google Scholar
Öberg, K. I., Murray-Clay, R., & Bergin, E. A. 2011a, ApJL, 743, L16CrossRefGoogle Scholar
Öberg, K. I., Qi, C., Wilner, D. J., & Hogerheijde, M. R. 2012, ApJ, 749, 162CrossRefGoogle Scholar
Qi, C., D'Alessio, P., Öberg, K. I., et al. 2011, ApJ, 740, 84Google Scholar
Qi, C., Öberg, K. I., & Wilner, D. J. 2013a, ApJ, 765, 34CrossRefGoogle Scholar
Qi, C., Öberg, K. I., Wilner, D. J., et al. 2013b, Science, 341, 630Google Scholar
Qi, C., Wilner, D. J., Aikawa, Y., Blake, G. A., & Hogerheijde, M. R. 2008, ApJ, 681, 1396Google Scholar
Ros, K. & Johansen, A. 2013, A&A, 552, A137Google Scholar
Thi, W., van Zadelhoff, G., & van Dishoeck, E. F. 2004, ApJ, 425, 955Google Scholar
van Dishoeck, E. F., Thi, W., & van Zadelhoff, G. 2003, A&A, 400, L1Google Scholar
Williams, J. P. & Best, W. M. J. 2014, ApJ, 788, 59CrossRefGoogle Scholar