Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-20T16:30:42.674Z Has data issue: false hasContentIssue false

Chemical enrichment in Ultra-Faint Dwarf galaxies

Published online by Cambridge University Press:  09 May 2016

Donatella Romano*
Affiliation:
INAF, Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127, Bologna, Italy email: donatella.romano@oabo.inaf.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our view of the Milky Way's satellite population has radically changed after the discovery, ten years ago, of the first Ultra-Faint Dwarf galaxies (UFDs). These extremely faint, dark-matter dominated, scarcely evolved stellar systems are found in ever-increasing number in our cosmic neighbourhood and constitute a gold-mine for studies of early star formation conditions and early chemical enrichment pathways. Here we show what can be learned from the measurements of chemical abundances in UFD stars read through the lens of chemical evolution studies, point out the limitations of the classic approach, and discuss the way to go to improve the models.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Brown, T. M., et al. 2014, ApJ, 796, 91Google Scholar
Feltzing, S., Eriksson, K., Kleyna, J., & Wilkinson, M. I. 2009, A&A (Letters), 508, L1Google Scholar
Frebel, A., Simon, J. D., Geha, M., & Willman, B. 2010, ApJ, 708, 560CrossRefGoogle Scholar
Frebel, A., Simon, J. D., & Kirby, E. N. 2014 ApJ, 786, 74Google Scholar
Gilmore, G., et al. 2013, ApJ, 763, 61CrossRefGoogle Scholar
Ishigaki, M. N., Aoki, W., Arimoto, N., & Okamoto, S. 2014, A&A, 562, A146Google Scholar
Ivezić, Ž., Beers, T. C., & Jurić, M. 2012, ARAA, 50, 251CrossRefGoogle Scholar
Kirby, E. N., et al. 2008, ApJ (Letters), 685, L43CrossRefGoogle Scholar
Klypin, A., Kravtsov, A. V., Valenzuela, O., & Prada, F. 1999, ApJ, 522, 82Google Scholar
Koch, A., et al. 2008, ApJ (Letters), 688, L13CrossRefGoogle Scholar
Koch, A. & Rich, R. M. 2014, ApJ, 794, 89Google Scholar
Kroupa, P. 2001, MNRAS, 322, 231Google Scholar
Lai, D. K., et al. 2011, ApJ, 738, 51CrossRefGoogle Scholar
Li, Y.-S., De Lucia, G., & Helmi, A. 2010, MNRAS, 401, 2036CrossRefGoogle Scholar
Matteucci, M. 2001, The Chemical Evolution of the Galaxy (Dordrecht: Kluwer)Google Scholar
Matteucci, M. & Brocato, E. 1990, ApJ, 365, 539CrossRefGoogle Scholar
McConnachie, A. W. 2012, AJ, 144, 4CrossRefGoogle Scholar
Moore, B., et al. 1999, ApJ (Letters), 524, L19CrossRefGoogle Scholar
Recchi, S., Matteucci, F., & D'Ercole, A. 2001, MNRAS, 322, 800CrossRefGoogle Scholar
Roederer, I. U. & Kirby, E. N. 2014, MNRAS, 440, 2665Google Scholar
Romano, D., Bellazzini, M., Starkenburg, E., & Leaman, R. 2015, MNRAS, 446, 4220Google Scholar
Romano, D., Karakas, A. I., Tosi, M., & Matteucci, F. 2010, A&A, 522, A32Google Scholar
Salvadori, S. & Ferrara, A. 2009, MNRAS (Letters), 395, L6Google Scholar
Simon, J. D., Frebel, A., McWilliam, A., Kirby, E. N., & Thompson, I. B. 2010, ApJ, 716, 446Google Scholar
Springel, V., et al. 2008, MNRAS, 391, 1685Google Scholar
Starkenburg, E., et al. 2013, A&A, 549, A88Google Scholar
Talbot, R. J., Jr. & Arnett, W. D. 1971, ApJ, 170, 409Google Scholar
Teyssier, R. 2002, A&A, 385, 337Google Scholar
Tinsley, B. M. 1980, Fundam. Cosm. Phys., 5, 287Google Scholar
Tollerud, E. J., Bullock, J. S., Strigari, L. E., & Willman, B. 2008, ApJ, 688, 277Google Scholar
Vargas, L. C., Geha, M., Kirby, E. N., & Simon, J. D. 2013, ApJ, 767, 134Google Scholar
Vincenzo, F., Matteucci, F., Vattakunnel, S., & Lanfranchi, G. A. 2014, MNRAS, 441, 2815Google Scholar
York, D. G., Adelman, J., Anderson, J. E., et al. 2000, AJ, 120, 1579Google Scholar