Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T18:58:04.307Z Has data issue: false hasContentIssue false

Break type and interactions from ultra-deep optical imaging of isolated galaxies

Published online by Cambridge University Press:  09 June 2023

P. M. Sánchez-Alarcón*
Affiliation:
Instituto de Astrofsica de Canarias, E-38205, La Laguna, Tenerife, Spain Departamento de Astrofsica, Universidad de La Laguna, E-38206, La Laguna, Tenerife, Spain
J. Román
Affiliation:
Instituto de Astrofsica de Canarias, E-38205, La Laguna, Tenerife, Spain Departamento de Astrofsica, Universidad de La Laguna, E-38206, La Laguna, Tenerife, Spain Instituto de Astrofsica de Andaluca (CSIC), Granada, Spain Kapteyn Astronomical Institute, University of Groningen, Groningen, the Netherlands
J. H. Knapen
Affiliation:
Instituto de Astrofsica de Canarias, E-38205, La Laguna, Tenerife, Spain Departamento de Astrofsica, Universidad de La Laguna, E-38206, La Laguna, Tenerife, Spain
L. Verdes-Montenegro
Affiliation:
Instituto de Astrofsica de Andaluca (CSIC), Granada, Spain
S. Comerón
Affiliation:
Instituto de Astrofsica de Canarias, E-38205, La Laguna, Tenerife, Spain Departamento de Astrofsica, Universidad de La Laguna, E-38206, La Laguna, Tenerife, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the standard cosmological model of galaxy evolution, mergers and interactions play a fundamental role in shaping galaxies. Galaxies that are currently isolated are thus interesting, allowing us to identify how internal or external processes impact galactic structure. However, current observational limits may be obscuring crucial information in the low-mass or low-brightness regime. We use the AMIGA catalog of isolated galaxies to explore the impact of different factors on the structure of these galaxies. In particular, we study the type of disk break based on the degree of isolation and the presence of interactions which are only detectable in the ultra-low surface brightness regime. We present the first results of an extensive observational campaign of ultra-deep optical imaging targeting a sample of 25 low-redshift (z < 0.035) isolated galaxies. The nominal surface brightness limits achieved are comparable to those to be obtained in the 10-year LSST coadds ( mag arcsec−2; 3σ ; 10” × 10”). We find that isolated galaxies have a considerably higher fraction of purely exponential disk profiles and a lower presence of up-bending breaks than field or cluster galaxies. Our extreme imaging depth allows us to detect the presence of previously unreported interactions with minor companions in some of the galaxies in our sample (∼40% of the galaxies show signs of interaction). The results of our work fit with the general framework of galactic structure in which up-bending breaks (Type III) would be produced by mergers and down-bending breaks (Type II) due to a threshold in star formation that would tend to become single exponential disk (Type I) in case of cessation or decrease of star formation.

Type
Poster Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Argudo-Fernández, M., Verley, S., Bergond, G., et al. 2013, A&A, 560, A9.Google Scholar
Gutiérrez, L., Erwin, P., Aladro, R., et al. 2011, AJ, 142, 145.Google Scholar
Melnyk, O., Karachentseva, V., & Karachentsev, I. 2015, MNRAS, 451, 1482.Google Scholar
Mesa, V., Alonso, S., Coldwell, G., et al. 2021, MNRAS, 501, 1046.Google Scholar
Pfeffer, J. L., Bekki, K., Forbes, D. A., et al. 2022, MNRAS, 509, 261.Google Scholar
Pohlen, M.; Trujillo, I. 2006, A&A, 454, 759P 10.1051/0004-6361:20064883CrossRefGoogle Scholar
Pranger, F., Trujillo, I., Kelvin, L. S., et al. 2017, MNRAS, 467, 2127.Google Scholar
Román, J., Trujillo, I., & Montes, M. 2020, A&A, 644, A42.Google Scholar
Sánchez-Blázquez, P.; Courty, S.; Gibson, B. K.; Brook, C. B. 2009, MNRAS, 398, 591 10.1111/j.1365-2966.2009.15133.xCrossRefGoogle Scholar
Scott, T. C., Sengupta, C., Verdes Montenegro, L., et al. 2014, A&A, 567, A56.Google Scholar
Tang, Y., Chen, Q., Zhang, H.-X., et al. 2020, AJ, 897, 79.Google Scholar
Watkins, A. E., Laine, J., Comerón, S., et al. 2019, A&A, 625, A36.Google Scholar
Verdes-Montenegro, L., Sulentic, J., Lisenfeld, U., et al. 2005, A&A, 436, 443. Google Scholar