Skip to main content Accessibility help
×
Home

Blue Luminescence and Extended Red Emission: Possible Connections to the Diffuse Interstellar Bands

  • A. N. Witt (a1)

Abstract

Blue luminescence (BL) and extended red emission (ERE) are observed as diffuse, optical-wavelength emissions in interstellar space, resulting from photoluminescence by ultraviolet(UV)-illuminated interstellar grains. Faintness and the challenge of separating the BL and ERE from the frequently much brighter dust-scattered continuum present major observational hurdles, which have permitted only slow progress in testing the numerous models that have been advanced to explain these two phenomena. Both the ERE, peaking near 680 nm (FWHM ~ 60 - 120 nm) and the BL, asymmetrically peaking at ~ 378 nm (FWHM ~ 45 nm), were first discovered in the Red Rectangle nebula. Subsequently, ERE and BL have been observed in other reflection nebulae, and in the case of the ERE, in carbon-rich planetary nebulae, H II regions, high-latitude cirrus clouds, the galactic diffuse ISM, and in external galaxies. BL exhibits a close spatial and intensity correlation with emission in the aromatic emission feature at 3.3 micron, most likely arising from small, neutral polycyclic aromatic hydrocarbon (PAH) molecules. The spectral characteristics of the BL also agree with those of fluorescence by PAH molecules with 13 to 19 carbon atoms. The BL phenomenon is thus most readily understood as the optical fluorescence of small, UV-excited aromatic molecules. The ERE, by contrast, though co-existent with mid-IR PAH emissions, does not correlate with emissions from either neutral or ionized PAHs. Instead, the spatial ERE morphology appears to be strictly governed by the density of far-UV (E ≥ 10.5 eV) photons, which are required for the ERE excitation. The most restrictive observational constraint for the ERE process is its exceptionally high quantum efficiency. If the ERE results from photo-excitation of a nano-particle carrier by photons with E ≥ 10.5 eV in a single-step process, the quantum efficiency exceeds 100%. Such a process, in which one to three low-energy optical photons may be emitted following a single far-UV excitation, is possible in highly isolated small clusters, e.g. small, dehydrogenated carbon clusters with about 20 to 28 carbon atoms. A possible connection between the ERE carriers and the carriers of DIBs may exist in that both are ubiquitous throughout the diffuse interstellar medium and both have an abundance of low-lying electronic levels with E ≤ 2.3 eV above the ground state.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Blue Luminescence and Extended Red Emission: Possible Connections to the Diffuse Interstellar Bands
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Blue Luminescence and Extended Red Emission: Possible Connections to the Diffuse Interstellar Bands
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Blue Luminescence and Extended Red Emission: Possible Connections to the Diffuse Interstellar Bands
      Available formats
      ×

Copyright

References

Hide All
Cohen, M., et al. 1975, ApJ, 196, 179
Bakes, E. L. O., Tielens, A. G. G. M., & Bauschlicher, C. W. Jr. 2001, ApJ, 556, 501
Berné, O., Joblin, C., Rapacioli, M., Thomas, J, Cuillandre, J.-C., & Deville, Y. 2008, A&A, 479, L41
Bregman, J. D., Rank, D., Temi, P., Hudgins, D., & Kay, L. 1993, ApJ, 411, 794
Darbon, S., Perrin, J.-M., & Sivan, J.-P. 1998, A&A, 333, 264
Darbon, S., Perrin, J.-M., & Sivan, J.-P. 1999, A&A, 348, 990
Darbon, S., Zavagno, A., Perrin, J.-M., Savine, C., Ducci, V., & Sivan, J.-P. 2000, A&A, 364, 723
Duley, W. W. 2009, ApJ, 705, 446
Furton, D. G. & Witt, A. N. 1990, ApJ, 364, L45
Furton, D. G. & Witt, A. N. 1992, ApJ, 386, 587
Glinski, R. J. & Anderson, C. M. 2002, MNRAS, 332, L17
Godard, M. & Dartois, E. 2010, A&A, 519, A39
Gordon, K. D., Witt, A. N., & Friedmann, B. C. 1998, ApJ, 498, 522
Guhathakurta, P. & Tyson, J. A. 1989, ApJ, 346, 773
Hobbs, L. M., et al. 2008, ApJ, 680, 1256
Hobbs, L. M., et al. 2009, ApJ, 705, 32
Iglesias-Groth, S. 2008, Organic Matter in Space, IAU Symp. 251, 57
Ienaka, N., et al. 2013, ApJ, 767, 80
Jones, R. O. 1999, J. Chem. Phys., 110, 5189
Kerr, T. H., Hurst, M. E., Miles, J. R., & Sarre, P. J. 1999, MNRAS, 303, 446
Kurth, M., Witt, A. N., Vijh, U. P., & Barnes, F. S. 2013, AAS Mtg. #221, #440.06
Ledoux, G., et al. 1998, A&A, 333, L39
Léger, A., Boissel, P. & d'Hendecourt, L. 1988, PRL, 60, 921
LePage, V., Snow, T. P., & Bierbaum, V. 2003, ApJ, 584, 316
Mathis, J. S., Mezger, P. G., & Panagia, N. 1983, A&A, 128, 212
Matsuoka, Y., Ienaka, N., Kawara, K., & Oyabu, S. 2011, ApJ, 736, 119
Montillaud, J., Joblin, C., & Toublanc, D. 2013, A&A, 552, A15
Mulas, G., Malloci, G., & Benvenuti, P. 2003, A&A, 410, 639
Nitzan, A. & Fortner, J. 1979, J. Chem. Phys., 71, 3524
Perrin, J.-M. & Sivan, J.-P. 1992, A&A, 255, 271
Perrin, J.-M. & Sivan, J.-P. 1995, A&A, 304, L21
Pierini, D., Majeed, A., Boroson, T., & Witt, A. N. 2002, ApJ, 569, 184
Rhee, Y. M., Lee, T. J., Gudipati, M. S., Allamandola, L. J. & Head-Gordon, M. 2007, PNAS, 104, 5274
Sakata, A., et al. 1992, ApJ, 393, L83
Salama, F. & Allamandola, L. 1994, The First Symposium on the Infrared Cirrus and Diffuse Interstellar Clouds, ASP. Conf. Ser. 58, Cutri, R. M. & Latter, W. B., Eds., 279
Scarrott, S. M., Watkin, S., Miles, J. R., & Sarre, P. J. 1992, MNRAS, 255, 11
Schmidt, G. D., Cohen, M., & Margon, B. 1980, ApJ, 239, L133
Schmidt, D. D. & Witt, A. N. 1991, ApJ, 383, 698
Seab, C. G. & Snow, T. P. 1984, ApJ, 277, 200
Smith, T. L. & Witt, A. N. 2002, ApJ, 565, 304
Snow, T. P. & Witt, A. N. 1995, Science, 270, 1455
Snow, T. P. & Witt, A. N. 1996, ApJ, 468, L65
Szomoru, A. & Guhathakurta, P. 1998, ApJL, 494, L93
Thomas, J. D., et al. 2013, MNRAS, 430, 1230
Thomas, J. D. & Witt, A. N. 2006, Proc. of the NASA LAW 2006, 264
Vijh, U. P., Witt, A. N., & Gordon, K. D. 2004, ApJ, 606, L65
Vijh, U. P., Witt, A. N., & Gordon, K. D. 2005a, ApJ, 619, 368
Vijh, U. P., Witt, A. N., & Gordon, K. D. 2005b, ApJ, 633, 262
Vijh, U. P., et al. 2006, ApJ, 653, 1336
Wada, S., Mizutani, Y., Narisawa, T., & Tokunaga, A. T. 2009, ApJ, 690, 111
Watkin, S., Gledhill, T. M., & Scarrott, S. M. 1991, MNRAS, 252, 229
Webster, A. 1993, MNRAS, 264, L1
Witt, A. N., Bohlin, R. C., & Stecher, T. P. 1983, ApJ, 267, L47
Witt, A. N. & Boroson, T. A. 1990, ApJ, 355, 182
Witt, A. N., Gordon, K. D., & Furton, D. G. 1998, ApJ, 501, L111
Witt, A. N., Gordon, K. D., Vijh, U. P., Sell, P. H., Smith, T. L., & Xie, R.-H. 2006, ApJ, 636, 303
Witt, A. N. & Malin, D. F. 1989, ApJ, 347, L25
Witt, A. N., Mandel, S., Sell, P. H., Dixon, T., & Vijh, U. P. 2008, ApJ, 679, 497
Witt, A. N. & Schild, R. E. 1988, ApJ, 325, 837
Witt, A. N., Schild, R. E., & Kraiman, J. B. 1984, ApJ, 281, 708
Witt, A. N., Vijh, U. P., Hobbs, L. M., Aufdenberg, J. P., Thorburn, J. A., & York, D. G. 2009, ApJ, 693, 1946
Xiang, F. Y., Li, A., & Zhong, J. X. 2011, ApJ, 733, 91
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

Blue Luminescence and Extended Red Emission: Possible Connections to the Diffuse Interstellar Bands

  • A. N. Witt (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.