Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-05T16:10:38.766Z Has data issue: false hasContentIssue false

The biological impact of superflares on planets in the Habitable Zone

Published online by Cambridge University Press:  13 January 2020

Adriana Valio*
Affiliation:
Mackenzie Presbyterian Universtiy, CRAAM, São Paulo, Brazil email: avalio@craam.mackenzie.br
Raissa Estrela
Affiliation:
Mackenzie Presbyterian Universtiy, CRAAM, São Paulo, Brazil email: avalio@craam.mackenzie.br
Luisa Cabral
Affiliation:
Mackenzie Presbyterian Universtiy, CRAAM, São Paulo, Brazil email: avalio@craam.mackenzie.br
Abel Grangeiro
Affiliation:
Mackenzie Presbyterian Universtiy, CRAAM, São Paulo, Brazil email: avalio@craam.mackenzie.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Younger and fully convective stars are much more active than our Sun, producing many superflares. Here we estimate the impact of the superflares UV radiation on living organisms on the surface of orbiting planets in the habitable zone of the star. For this we study two active stars, Kepler-96 (solar type) and TRAPPIST-1 (M dwarf). Kepler-96, with an age of 2.4 Gyr, is at the same stage of the Sun when the first multicellular organisms appeared on Earth. The biological impact of super flares are studied on a hypothetical Earth at 1AU of Kepler-96 and on planets TRAPPIST-1e, f, and g for three atmospheres scenarios: an Archean and Present-day atmospheres with and without ozone. We estimated the survival rates of two bacteria and concluded that life would only survive on the surface of these planets if their atmosphere had an ozone layer, or in shallow waters of an ocean.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020 

References

Cnossen, I., Sanz-Forcada, J., Favata, F., Witasse, O., Zegers, T., & Arnold, N. F. 2007, JGR, 112, E0200810.1029/2006JE002784CrossRefGoogle Scholar
Estrela, R. & Valio, A. 2018, Astrobiology, 18, 14141424CrossRefGoogle Scholar
Gascon, J., Oubina, A., Perez-Lezaun, A., & Urmeneta, J. 1995, Curr. Microbiol., 30, 17718210.1007/BF00296205CrossRefGoogle Scholar
Ghosal, D., Omelchenko, M. V., Gaidamakova, E. K., Matrosova, V. Y., Vasilenko, A., Venkateswaran, A., Zhai, M., Kostandarithes, H. M., Brim, H., Makarova, K. S., Wackett, L. P., Fredrickson, J. K., & Daly, M. J. 2005, FEMS Microbiol. Rev., 29, 361375Google Scholar
Hawley, S. L., & Pettersen, B. R. 1991, ApJ, 378, 72510.1086/170474CrossRefGoogle Scholar
Maehara, H., Shibayama, T., Notsu, Y., Notsu, S., Honda, S., Nogami, D., & Shibata, K. 2015, Earth Planets Space, 67, 5910.1186/s40623-015-0217-zCrossRefGoogle Scholar
OMalley-James, J. T. & Kaltenegger, L. 2017, MNRAS, 469, L26L3010.1093/mnrasl/slx047CrossRefGoogle Scholar
Segura, A., Walkowicz, L. M., Meadows, V., Kasting, J., & Hawley, S. 2010, Astrobiology, 10, 751771CrossRefGoogle Scholar
Vida, K, Kovari, Zs., Pal, A., K. Olah, K, & Kriskovics, L. 2017, ApJ, 841, 124129CrossRefGoogle Scholar
Woods, T. N., Eparvier, F. G., Fontenla, J., Harder, J., Kopp, G., McClintock, W. E., Rottman, G., Smiley, B., & Snow, M. 2004, Geophys. Res. Lett, 31, L10802CrossRefGoogle Scholar