Skip to main content Accessibility help
×
Home

Automated Detection Methods for Solar Activities and an Application for Statistic Analysis of Solar Filament

Published online by Cambridge University Press:  27 November 2018


Q. Hao
Affiliation:
School of Astronomy and Space Science, Nanjing University, Nanjing 210023, China email: haoqi@nju.edu.cn Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, China
P. F. Chen
Affiliation:
School of Astronomy and Space Science, Nanjing University, Nanjing 210023, China email: haoqi@nju.edu.cn Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, China
C. Fang
Affiliation:
School of Astronomy and Space Science, Nanjing University, Nanjing 210023, China email: haoqi@nju.edu.cn Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, China
Corresponding
E-mail address:

Abstract

With the rapid development of telescopes, both temporal cadence and the spatial resolution of observations are increasing. This in turn generates vast amount of data, which can be efficiently searched only with automated detections in order to derive the features of interest in the observations. A number of automated detection methods and algorithms have been developed for solar activities, based on the image processing and machine learning techniques. In this paper, after briefly reviewing some automated detection methods, we describe our efficient and versatile automated detection method for solar filaments. It is able not only to recognize filaments, determine the features such as the position, area, spine, and other relevant parameters, but also to trace the daily evolution of the filaments. It is applied to process the full disk Hα data observed in nearly three solar cycles, and some statistic results are presented.


Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Aschwanden, M. J. & Freeland, S. L. 2012, Astrophys. J., 754, 112CrossRefGoogle Scholar
Berghmans, D. 2002, in ESA Special Publication, Vol. 506, Solar Variability: From Core to Outer Frontiers, ed. A. Wilson, 85–89Google Scholar
Bernasconi, P. N., Rust, D. M., & Hakim, D. 2005, Solar Phys, 228, 97CrossRefGoogle Scholar
Bonnin, X., Aboudarham, J., Fuller, N., Csillaghy, A., & Bentley, R. 2013, Sol. Phys., 283, 49CrossRefGoogle Scholar
Boursier, Y., Lamy, P., Llebaria, A., Goudail, F., & Robelus, S. 2009, Sol. Phys., 257, 125CrossRefGoogle Scholar
Byrne, J. P., Morgan, H., Habbal, S. R., & Gallagher, P. T. 2012, Astrophys. J., 752, 145CrossRefGoogle Scholar
Caballero, C. & Aranda, M. C. 2014, Sol. Phys., 289, 1643CrossRefGoogle Scholar
Chen, P. F. 2011, Living Reviews in Solar Physics, 8, 1CrossRefGoogle Scholar
Colak, T. & Qahwaji, R. 2008, Sol. Phys., 248, 277CrossRefGoogle Scholar
Crockett, P. J., Jess, D. B., Mathioudakis, M., & Keenan, F. P. 2009, Mon. Not. Roy. Astron. Soc., 397, 1852CrossRefGoogle Scholar
Curto, J. J., Blanca, M., & Martínez, E. 2008, Sol. Phys., 250, 411CrossRefGoogle Scholar
Djafer, D., Irbah, A., & Meftah, M. 2012, Solar Physics, 281, 863CrossRefGoogle Scholar
Feng, S., Ji, K.-f., Deng, H., Wang, F., & Fu, X.-d. 2012, Journal of Korean Astronomical Society, 45, 167CrossRefGoogle Scholar
Fernández Borda, R. A., Mininni, P. D., Mandrini, C. H., et al. 2001, in Astronomical Society of the Pacific Conference Series, Vol. 248, Magnetic Fields Across the Hertzsprung-Russell Diagram, ed. Mathys, G., Solanki, S. K., & Wickramasinghe, D. T., 149Google Scholar
Fonte, C. C. & Fernandes, J. 2009, Sol. Phys., 260, 21CrossRefGoogle Scholar
Foullon, C. & Verwichte, E. 2006, Sol. Phys., 234, 135CrossRefGoogle Scholar
Fuller, N., Aboudarham, J., & Bentley, R. D. 2005, Solar Phys, 227, 61CrossRefGoogle Scholar
Gao, J., Wang, H., & Zhou, M. 2002, Solar Phys, 205, 93CrossRefGoogle Scholar
Gill, C. D., Fletcher, L., & Marshall, S. 2010, Sol. Phys., 262, 355CrossRefGoogle Scholar
Goel, S. & Mathew, S. K. 2014, Sol. Phys., 289, 1413CrossRefGoogle Scholar
Hao, Q., Fang, C., Cao, W., & Chen, P. F. 2015, Astrophys. J. Suppl. Ser., 221, 33CrossRefGoogle Scholar
Hao, Q., Fang, C., & Chen, P. F. 2013, Sol. Phys., 286, 385CrossRefGoogle Scholar
Hao, Q., Guo, Y., Fang, C., Chen, P.-F., & Cao, W.-D. 2016, Research in Astronomy and Astrophysics, 16, 1CrossRefGoogle Scholar
Hutton, J. & Morgan, H. 2017, Astron. Astrophys., 599, A68CrossRefGoogle Scholar
Javaherian, M., Safari, H., Amiri, A., & Ziaei, S. 2014, Sol. Phys., 289, 3969CrossRefGoogle Scholar
Joshi, A. D., Srivastava, N., & Mathew, S. K. 2010, Solar Phys, 262, 425CrossRefGoogle Scholar
Kirk, M. S., Balasubramaniam, K. S., Jackiewicz, J., McNamara, B. J., & McAteer, R. T. J. 2013, Sol. Phys., 283, 97CrossRefGoogle Scholar
Kirk, M. S., Pesnell, W. D., Young, C. A., & Hess Webber, S. A. 2009, Sol. Phys., 257, 99CrossRefGoogle Scholar
Krista, L. D. & Gallagher, P. T. 2009, Sol. Phys., 256, 87CrossRefGoogle Scholar
Labrosse, N., Dalla, S., & Marshall, S. 2010, Solar Phys, 262, 449CrossRefGoogle Scholar
Loboda, I. P. & Bogachev, S. A. 2015, Sol. Phys., 290, 1963CrossRefGoogle Scholar
Long, D. M., Bloomfield, D. S., Gallagher, P. T., & Pérez-Suárez, D. 2014, Sol. Phys., 289, 3279CrossRefGoogle Scholar
Maurya, R. A. & Ambastha, A. 2010, Sol. Phys., 262, 337CrossRefGoogle Scholar
McAteer, R. T. J., Kestener, P., Arneodo, A., & Khalil, A. 2010, Sol. Phys., 262, 387CrossRefGoogle Scholar
Morgan, H., Byrne, J. P., & Habbal, S. R. 2012, Astrophys. J., 752, 144CrossRefGoogle Scholar
Mravcová, L. & Švanda, M. 2017, New Astronomy, 57, 14CrossRefGoogle Scholar
Olmedo, O., Zhang, J., Wechsler, H., Poland, A., & Borne, K. 2008, Sol. Phys., 248, 485CrossRefGoogle Scholar
Pant, V., Willems, S., Rodriguez, L., et al. 2016, Astrophys. J., 833, 80CrossRefGoogle Scholar
Podladchikova, O. & Berghmans, D. 2005, Sol. Phys., 228, 265CrossRefGoogle Scholar
Pucha, R., Hiremath, K. M., & Gurumath, S. R. 2016, Journal of Astrophysics and Astronomy, 37, 3CrossRefGoogle Scholar
Qu, M., Shih, F., Jing, J., & Wang, H. 2004, Sol. Phys., 222, 137CrossRefGoogle Scholar
Qu, M., Shih, F. Y., Jing, J., & Wang, H. 2003, Sol. Phys., 217, 157CrossRefGoogle Scholar
Qu, M., Shih, F. Y., Jing, J., & Wang, H. 2005, Solar Phys, 228, 119CrossRefGoogle Scholar
Qu, M., Shih, F. Y., Jing, J., & Wang, H. 2006, Sol. Phys., 237, 419CrossRefGoogle Scholar
Robbrecht, E. & Berghmans, D. 2004, Astron. Astrophys., 425, 1097CrossRefGoogle Scholar
Schad, T. 2017, Sol. Phys., 292, 132CrossRefGoogle Scholar
Scholl, I. F. & Habbal, S. R. 2008, Sol. Phys., 248, 425CrossRefGoogle Scholar
Shibata, K. & Magara, T. 2011, Living Reviews in Solar Physics, 8, 6CrossRefGoogle Scholar
Shih, F. Y. & Kowalski, A. J. 2003, Sol. Phys., 218, 99CrossRefGoogle Scholar
Sych, R. A., Nakariakov, V. M., Anfinogentov, S. A., & Ofman, L. 2010, Sol. Phys., 266, 349CrossRefGoogle Scholar
Tandberg-Hanssen, E., ed. 1995, Astrophysics and Space Science Library, Vol. 199, The nature of solar prominencesGoogle Scholar
Tappin, S. J., Howard, T. A., Hampson, M. M., Thompson, R. N., & Burns, C. E. 2012, Journal of Geophysical Research (Space Physics), 117, A05103Google Scholar
Turmon, M., Pap, J. M., & Mukhtar, S. 2002, Astrophys. J., 568, 396CrossRefGoogle Scholar
Veronig, A., Steinegger, M., Otruba, W., et al. 2000, in ESA Special Publication, Vol. 463, The Solar Cycle and Terrestrial Climate, Solar and Space weather, ed. A. Wilson, 455Google Scholar
Wang, H., Qiu, J., Jing, J., & Zhang, H. 2003, Astrophys. J., 593, 564CrossRefGoogle Scholar
Wang, Y., Cao, H., Chen, J., et al. 2010, Astrophys J, 717, 973CrossRefGoogle Scholar
Watson, F., Fletcher, L., Dalla, S., & Marshall, S. 2009, Sol. Phys., 260, 5CrossRefGoogle Scholar
Yang, Y.-F., Qu, H.-X., Ji, K.-F., et al. 2015, Research in Astronomy and Astrophysics, 15, 569CrossRefGoogle Scholar
Yuan, Y., Shih, F. Y., Jing, J., Wang, H., & Chae, J. 2011, Solar Phys, 272, 101CrossRefGoogle Scholar
Zhang, J., Wang, Y., & Liu, Y. 2010, Astrophys. J., 723, 1006CrossRefGoogle Scholar
Zhao, C., Lin, G., Deng, Y., & Yang, X. 2016, Publications of the Astronomical Society of Australia, 33, e018CrossRefGoogle Scholar
Zharkov, S., Zharkova, V., Ipson, S., & Benkhalil, A. 2005, EURASIP Journal on Advances in Signal Processing, 2005, 318462CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 53 *
View data table for this chart

* Views captured on Cambridge Core between 27th November 2018 - 5th December 2020. This data will be updated every 24 hours.

Access
Hostname: page-component-b4dcdd7-tf8mx Total loading time: 0.433 Render date: 2020-12-05T15:40:03.247Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Dec 05 2020 15:00:01 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Automated Detection Methods for Solar Activities and an Application for Statistic Analysis of Solar Filament
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Automated Detection Methods for Solar Activities and an Application for Statistic Analysis of Solar Filament
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Automated Detection Methods for Solar Activities and an Application for Statistic Analysis of Solar Filament
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *