Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-09T13:03:42.016Z Has data issue: false hasContentIssue false

ALMA resolved views of molecular filaments/clumps in the Large Magellanic Cloud: A possible gas flow penetrating one of the most massive protocluster systems in the Local Group

Published online by Cambridge University Press:  09 June 2023

Kazuki Tokuda*
Affiliation:
Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

Abstract

We present spatially resolved molecular filaments and clumps in the high-mass star-forming regions N159E-Papillon, W-South, and W-North in the Large Magellanic Cloud (LMC). Our ALMA observations in CO isotopes and millimeter continuum revealed remarkable hub-filament systems with a typical width of 0.1 pc. The most massive clump in the observed regions, N159W-North MMS-2, shows an especially massive/dense nature whose total H2 mass and peak column density are ∼104 M and ∼1024 cm−2, respectively, and harbors massive (∼100 M) starless core candidates. The hub-filamentary clouds in the three regions share a common orientation and have 10–30 pc scale head-tail structures with active star formation at the tips. Their striking similarity proposes a “teardrops-inflow” model, i.e., substructured conversing H i flow, that explains the synchronized, extreme star formation across ∼50 pc, including one of the most massive protocluster clumps in the Local Group.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fukui, Y., Kawamura, A., Minamidani, T., et al. 2008, ApJS, 178, 56 10.1086/589833CrossRefGoogle Scholar
Fukui, Y., Tsuge, K., Sano, H., et al. 2017, PASJ, 69, L5 10.1093/pasj/psx032CrossRefGoogle Scholar
Tsuge, K., Sano, H., Tachihara, K., et al. 2019, ApJ, 871, 44 10.3847/1538-4357/aaf4fbCrossRefGoogle Scholar
Fukui, Y., Harada, R., Tokuda, K., et al. 2015, ApJL, 807, L4 10.1088/2041-8205/807/1/L4CrossRefGoogle Scholar
Saigo, K., Onishi, T., Nayak, O., et al. 2017, ApJ, 835, 108 10.3847/1538-4357/835/1/108CrossRefGoogle Scholar
Fukui, Y., Tokuda, K., Saigo, K., et al. 2019, ApJ 886, 14 10.3847/1538-4357/ab4900CrossRefGoogle Scholar
Tokuda, K., Fukui, Y., Harada, R., et al. 2019, ApJ, 886, 15 10.3847/1538-4357/ab48ffCrossRefGoogle Scholar
Andr, P., Revret, V., Knyves, V., et al. 2016, A&A, 592, A54 Google Scholar
Tokuda, K., Minami, T., Fukui, Y., et al. 2022, ApJ, 933, 20 10.3847/1538-4357/ac6b3cCrossRefGoogle Scholar
Inoue, T., Hennebelle, P., Fukui, Y., et al. 2018, PASJ, 70, S5310.1093/pasj/psx089CrossRefGoogle Scholar