Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T14:22:08.869Z Has data issue: false hasContentIssue false

AGN types and unification model

Published online by Cambridge University Press:  29 January 2021

Luigi Spinoglio
Affiliation:
Istituto di Astrofisica e Planetologia Spaziali - INAF, Rome, Via Fosso del Cavaliere 100, 00133, Roma, Italia emails: luigi.spinoglio@iaps.inaf.it, j.a.fernandez.ontiveros@gmail.com
Juan Antonio Fernández-Ontiveros
Affiliation:
Istituto di Astrofisica e Planetologia Spaziali - INAF, Rome, Via Fosso del Cavaliere 100, 00133, Roma, Italia emails: luigi.spinoglio@iaps.inaf.it, j.a.fernandez.ontiveros@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The motivation of the “unified model” is to explain the main properties of the large zoo of active galactic nuclei with a single physical object. The discovery of broad permitted lines in the polarized spectrum of type 2 Seyfert galaxies in the mid 80’s led to the idea of an obscuring torus, whose orientation with respect to our line of sight was the reason of the different optical spectra. However, after many years of observations with different techniques, including IR and mm interferometry, the resulting properties of the observed dust structures differ from the torus model that would be needed to explain the type 1 vs type 2 dichotomy. Moreover, in the last years, multi-frequency monitoring of active galactic nuclei has shown an increasing number of transitions from one type to the other one, which cannot be explained in terms of the simple orientation of the dusty structure surrounding the active galactic nucleus (AGN). The interrelations between the AGN and the host galaxy, as also shown in the Magorrian relation, suggest that the evolution of the host galaxy may also have an important role in the observed manifestation of the nuclei. As an example, the observed delay between the maximum star formation activity and the onset of the AGN activity, and the higher occurrence of type 2 nuclei in star forming galaxies, have suggested the possible evolutionary path from, e.g., H II → AGN2 → AGN1. In the next years the models of unification need to also consider this observational framework and not only simple orientation effects.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Antonucci, R. R. J. 1993, ARA&A, 31, 47310.1146/annurev.aa.31.090193.002353CrossRefGoogle Scholar
Antonucci, R. 2012, Astronomical and Astrophysical Transactions, 27, 557Google Scholar
Antonucci, R. R. J. & Miller, J. S. 1985, ApJ, 297, 62110.1086/163559CrossRefGoogle Scholar
Aretxaga, I., Joguet, B., Kunth, D., et al. 1999, ApJl, 519, L12310.1086/312114CrossRefGoogle Scholar
Assef, R. J., Stern, D., Kochanek, C. S., et al. 2013, ApJ, 772, 2610.1088/0004-637X/772/1/26CrossRefGoogle Scholar
Ballantyne, D. R. Everett, J. E., & Murray, N. 2006, ApJ, 639, 74010.1086/499558CrossRefGoogle Scholar
Buchanan, C. L., Gallimore, J. F., ODea, C. P., et al. 2006, AJ, 132, 40110.1086/505022CrossRefGoogle Scholar
Burlon, D., Ajello, M., Greiner, J., et al. 2011, ApJ, 728, 5810.1088/0004-637X/728/1/58CrossRefGoogle Scholar
Chambers, K. C., Magnier, E. A., Metcalfe, N., et al. 2016, arXiv e-prints, arXiv:1612.05560Google Scholar
Clavel, J., Joly, M., Collin-Souffrin, S., et al. 1983, MNRAS, 202, 8510.1093/mnras/202.1.85CrossRefGoogle Scholar
Drake, A. J., Djorgovski, S. G., Mahabal, A., et al. 2009, ApJ, 696, 87010.1088/0004-637X/696/1/870CrossRefGoogle Scholar
Edelson, R. A., Malkan, M. A., Rieke, G. H., et al. 1987, ApJ, 321, 23310.1086/165627CrossRefGoogle Scholar
Elitzur, M. & Shlosman, I. 2006, ApJL, 648, L10110.1086/508158CrossRefGoogle Scholar
Elitzur, M. & Ho, L. C. 2009, ApJL, 701, L9110.1088/0004-637X/701/2/L91CrossRefGoogle Scholar
Eracleous, M. & Halpern, J. P. 2001, ApJ, 554, 24010.1086/321331CrossRefGoogle Scholar
Falcke, H. & Markoff, S. 2000, A&A, 362, 113Google Scholar
Falcke, H., Körding, E., & Markoff, S. 2004, A&A, 414, 895Google Scholar
Fernández-Ontiveros, J. A., Spinoglio, L., Pereira-Santaella, M., et al. 2016, ApJS, 226, 1910.3847/0067-0049/226/2/19CrossRefGoogle Scholar
Ferrarese, L. & Merritt, D. 2000, ApJ, 539, L910.1086/312838CrossRefGoogle Scholar
Gandhi, P. 2005, Asian Journal of Physics, 13, 90Google Scholar
García-Burillo, S., Combes, F., Ramos Almeida, C., et al. 2016, ApJ, 823, 1210.3847/2041-8205/823/1/L12CrossRefGoogle Scholar
Glindemann, A., Algomedo, J., Amestica, R., et al. 2003, SPIE, 4838, 89Google Scholar
González Delgado, R., Heckman, T., & Leitherer, C. 2001, ApJ, 546, 84510.1086/318295CrossRefGoogle Scholar
González-Martn, O., Masegosa, J., Garca-Bernete, I., et al. 2019, ApJ, 884, 1010.3847/1538-4357/ab3e6bCrossRefGoogle Scholar
González-Martn, O., Masegosa, J., Garca-Bernete, I., et al. 2019, ApJ, 884, 1Google Scholar
Greenhill, L. J., Gwinn, C. R., Antonucci, R., & Barvainis, R. 1996, ApJL, 472, L2110.1086/310346CrossRefGoogle Scholar
Greenhill, L. J. & Gwinn, C. R. 1997, Ap&SS, 248, 261Google Scholar
Heckman, T. M. & Best, P. N. 2014, ARA&A, 52, 58910.1146/annurev-astro-081913-035722CrossRefGoogle Scholar
Hickox, R. C. & Alexander, D. M. 2018, ARA&A, 56, 62510.1146/annurev-astro-081817-051803CrossRefGoogle Scholar
Ho, L. C., Filippenko, A. V., & Sargent, W. L. W. 1996, ApJ, 462, 18310.1086/177140CrossRefGoogle Scholar
Ho, L. C. 2008, ARA&A, 46, 47510.1146/annurev.astro.45.051806.110546CrossRefGoogle Scholar
Hönig, S. F. 2016, Astronomy at High Angular Resolution, 9510.1007/978-3-319-39739-9_6CrossRefGoogle Scholar
Hönig, S. F. & Kishimoto, M. 2017, ApJL, 838, L2010.3847/2041-8213/aa6838CrossRefGoogle Scholar
Hönig, S. F. 2019, ApJ, 884, 17110.3847/1538-4357/ab4591CrossRefGoogle Scholar
Hopkins, P. F. 2012, MNRAS, 420, L810.1111/j.1745-3933.2011.01179.xCrossRefGoogle Scholar
Hunt, L. K. & Malkan, M. A. 1999, ApJ, 516, 66010.1086/307150CrossRefGoogle Scholar
Hutsemékers, D., Agís González, B., Marin, F., et al. 2019, A&A, 625, A54Google Scholar
Impellizzeri, C. M. V., Gallimore, J. F., Baum, S. A., et al. 2019, ApJL, 884, L28Google Scholar
Jaffe, W., Meisenheimer, K., Röttgering, H. J. A., et al. 2004, Nature, 429, 4710.1038/nature02531CrossRefGoogle Scholar
Kauffmann, G., Heckman, T. M., Tremonti, C. et al. 2003, MNRAS, 346, 105510.1111/j.1365-2966.2003.07154.xCrossRefGoogle Scholar
Kim, D.-C., Yoon, I., & Evans, A. S. 2018, ApJ, 861, 5110.3847/1538-4357/aac77dCrossRefGoogle Scholar
Krongold, Y., Dultzin-Hacyan, D., & Marziani, P. 2002, ApJ, 572, 16910.1086/340299CrossRefGoogle Scholar
Kuraszkiewicz, J. K. et al. 2003, ApJ, 590, 12810.1086/374919CrossRefGoogle Scholar
LaMassa, S. M., Cales, S., Moran, E. C., et al. 2015, ApJ, 800, 14410.1088/0004-637X/800/2/144CrossRefGoogle Scholar
Leinert, Ch ., Graser, U., Przygodda, F. et al. 2003, Ap&SS, 286, 73Google Scholar
Levenson, N. A., Weaver, K. A., & Heckman, T. M. 2001, ApJ, 550, 23010.1086/319726CrossRefGoogle Scholar
López-Gonzaga, N., Jaffe, W., Burtscher, L., et al. A&A, 565, A71Google Scholar
Lutz, D., Maiolino, R., Spoon, H. W. W., & Moorwood, A. F. M. 2004, A&A, 418, 465Google Scholar
Madau, P. & Dickinson, M. 2014, ARA&A, 52, 415Google Scholar
Magorrian, J. et al. 1998, AJ, 115, 2285Google Scholar
Maiolino, R. Ruiz, M., Rieke, G. H., Keller, L. D. 1995, ApJ, 466, 56110.1086/175815CrossRefGoogle Scholar
Markoff, S., Falcke, H., & Fender, R. 2001, A&A, 372, L25Google Scholar
Markoff, S., Nowak, M., Young, A., et al. 2008, ApJ, 681, 90510.1086/588718CrossRefGoogle Scholar
Mathur, S., Denney, K. D., Gupta, A., et al. 2018, ApJ, 866, 12310.3847/1538-4357/aadd91CrossRefGoogle Scholar
Matt, G., Guainazzi, M., & Maiolino, R. 2003, MNRAS, 342, 42210.1046/j.1365-8711.2003.06539.xCrossRefGoogle Scholar
McLeod, K. K. & Rieke, G. H. 1995, ApJ, 441, 9610.1086/175339CrossRefGoogle Scholar
Merloni, A., Heinz, S., & di Matteo, T. 2003, MNRAS, 345, 105710.1046/j.1365-2966.2003.07017.xCrossRefGoogle Scholar
Narayan, R., Yi, I., & Mahadevan, R. 1995, Nature, 374, 62310.1038/374623a0CrossRefGoogle Scholar
Narayan, R. & Yi, I. 1995, ApJ, 452, 71010.1086/176343CrossRefGoogle Scholar
Netzer, H. 2015 ARA&A, 53, 36510.1146/annurev-astro-082214-122302CrossRefGoogle Scholar
Nicastro, F., Martocchia, A., & Matt, G. 2003, ApJL, 589, L1310.1086/375715CrossRefGoogle Scholar
Oknyansky, V. L., Winkler, H., Tsygankov, S. S., et al. 2019, MNRAS, 483, 55810.1093/mnras/sty3133CrossRefGoogle Scholar
Parker, M. L., Schartel, N., Grupe, D., et al. 2019, MNRAS, 483, L8810.1093/mnrasl/sly224CrossRefGoogle Scholar
Peterson, B. M., Foltz, C. B., Byard, P. L., et al. 1982, ApJS, 49, 46910.1086/190807CrossRefGoogle Scholar
Peterson, B. M., Wanders, I., Bertram, R., et al. 1998, ApJ, 501, 8210.1086/305813CrossRefGoogle Scholar
Penston, M. V. & Pérez, E. 1984, MNRAS, 211P, 3310.1093/mnras/211.1.33PCrossRefGoogle Scholar
Raimann, D., Storchi-Bergmann, T., González Delgado, R. M., et al. 2003, MNRAS, 339, 77210.1046/j.1365-8711.2003.06222.xCrossRefGoogle Scholar
Ramos Almeida, C. & Ricci, C. 2017, Nat.As., 1, 67910.1038/s41550-017-0232-zCrossRefGoogle Scholar
Ricci, C., Ueda, Y., Koss, M. J. et al. 2015, ApJ, 815, L1310.1088/2041-8205/815/1/L13CrossRefGoogle Scholar
Risaliti, G., Elvis, M., Fabbiano, G., et al. 2005, ApJL, 623, L93Google Scholar
Rush, B., Malkan, M. A. & Spinoglio, L. 1993, ApJSS, 89, 110.1086/191837CrossRefGoogle Scholar
Schmitt, H., Storchi-Bergmann, T., & Cid Fernandes, R. 1999, MNRAS, 303, 17310.1046/j.1365-8711.1999.02203.xCrossRefGoogle Scholar
Seyfert, C. K. 1943, ApJ, 97, 2810.1086/144488CrossRefGoogle Scholar
Seyfert, C. K. 1946, PAAS, 10, 317Google Scholar
Sheng, Z., Wang, T., Jiang, N., et al. 2017, ApJL, 846, L710.3847/2041-8213/aa85deCrossRefGoogle Scholar
Spinoglio, L. & Malkan, M. A. 1989, ApJ, 342, 8310.1086/167577CrossRefGoogle Scholar
Storchi-Bergmann, T., Baldwin, J. A., & Wilson, A. S. 1993, ApJL, 410, L1110.1086/186867CrossRefGoogle Scholar
Storchi-Bergmann, T., González Delgado, R. M., Schmitt, H. R., et al. 2001, ApJ, 559, 14710.1086/322290CrossRefGoogle Scholar
Tristram, K. R. W., Burtscher, L., Jaffe, W., et al. 2014, A&A, 563, A82Google Scholar
Tommasin, S., Spinoglio, L., Malkan, M. A., et al. 2010, ApJ, 709, 125710.1088/0004-637X/709/2/1257CrossRefGoogle Scholar
Wild, V., Heckman, T., & Charlot, S. 2010, MNRAS, 405, 933Google Scholar
Wootten, A. & Thompson, A. R., 2009, Proc. of the IEEE, Vol. 97, Issue 8, 146310.1109/JPROC.2009.2020572CrossRefGoogle Scholar
Yu, Z., Yuan, F., & Ho, L. C. 2011, ApJ, 726, 8710.1088/0004-637X/726/2/87CrossRefGoogle Scholar