Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-55wx7 Total loading time: 0.25 Render date: 2021-03-01T07:56:30.391Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Towards Realistic Understandings of Gas Dynamics in Protoplanetary Disks

Published online by Cambridge University Press:  13 January 2020

Xue-Ning Bai
Affiliation:
Institute for Advanced Study and Center for Astrophysics, Tsinghua University Beijing100084, China email: xbai@tsinghua.edu.cn
Corresponding
E-mail address:

Abstract

The gas dynamics of protoplanetary disks (PPDs) plays a crucial role in almost all stages of planet formation, yet it is far from being well understood largely due to the complex interplay among various microphysical processes. Primarily, PPD gas dynamics is likely governed by magnetic fields, and their coupling with the weakly ionized gas is described by non-ideal magnetohydrodynamic (MHD) effects. Incorporating these effects, I will present the first fully global simulations of PPDs that include the most realistic disk microphysics. Accretion and disk evolution is primarily driven by magnetized disk winds with significant mass loss comparable to accretion rate. The overall disk gas dynamics strongly depends on the polarity of large-scale poloidal magnetic field threading the disk owing to the Hall effect. The flow structure in the disk is highly unconventional with major implications on planet formation.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020 

Access options

Get access to the full version of this content by using one of the access options below.

References

Bai, X.-N. 2011, ApJ, 739, 50 CrossRefGoogle Scholar
Bai, X.-N. 2014, ApJ, 791, 137 CrossRefGoogle Scholar
Bai, X.-N. 2017, ApJ, 845, 75 CrossRefGoogle Scholar
Bai, X.-N., & Goodman, J. 2009, ApJ, 701, 737 CrossRefGoogle Scholar
Bai, X.-N., & Stone, J. M. 2011, ApJ, 736, 144 CrossRefGoogle Scholar
Bai, X.-N., & Stone, J. M. 2013, ApJ, 769, 76 CrossRefGoogle Scholar
Béthune, W., Lesur, G., & Ferreira, J. 2017, A&A, 600, A75 Google Scholar
Balbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214 CrossRefGoogle Scholar
Blandford, R. D., & Payne, D. G. 1982, MNRAS, 199, 883 CrossRefGoogle Scholar
Fleming, T., & Stone, J. M. 2003, ApJ, 585, 908 CrossRefGoogle Scholar
Gammie, C. F. 1996, ApJ, 457, 355 CrossRefGoogle Scholar
Gressel, O., Turner, N. J., Nelson, R. P., & McNally, C. P. 2015, ApJ, 801, 84 CrossRefGoogle Scholar
Hartigan, P., Edwards, S., & Ghandour, L. 1995, ApJ, 452, 736 CrossRefGoogle Scholar
Hartmann, L., Calvet, N., Gullbring, E., & D’Alessio, P. 1998, ApJ, 495, 385 CrossRefGoogle Scholar
Ilgner, M., & Nelson, R. P. 2006, A&A, 445, 205 Google Scholar
Kunz, M. W. 2008, MNRAS, 385, 1494 CrossRefGoogle Scholar
Lesur, G., Kunz, M. W., & Fromang, S. 2014, A&A, 566, A56 Google Scholar
Perez-Becker, D., & Chiang, E. 2011, ApJ, 735, 8 CrossRefGoogle Scholar
Simon, M. N., Pascucci, I., Edwards, S., et al. 2016, ApJ, 831, 169 CrossRefGoogle Scholar
Wardle, M. 2007, AP&SS, 311, 35 Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 41 *
View data table for this chart

* Views captured on Cambridge Core between 13th January 2020 - 1st March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Towards Realistic Understandings of Gas Dynamics in Protoplanetary Disks
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Towards Realistic Understandings of Gas Dynamics in Protoplanetary Disks
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Towards Realistic Understandings of Gas Dynamics in Protoplanetary Disks
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *