Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-19T00:29:34.977Z Has data issue: false hasContentIssue false

High magnetic field neutron stars and magnetars in binary systems

Published online by Cambridge University Press:  27 February 2023

Sergei B. Popov*
Affiliation:
Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetski pr. 13, 119234, Moscow, Russia email: polar@sai.msu.ru

Abstract

Situation with highly magnetized neutron stars in binary systems is not yet certain. On the one hand, all best studied magnetars seem to be isolated objects. On the other, there are many claims based on model-dependent analysis of spin properties or/and luminosity of neutron stars in X-ray binaries in favour of large fields. In addition, there are a few results suggesting a magnetar-like activity of neutron stars in close binary systems. Most of theoretical considerations do not favour even existence, not speaking about active decay, of magnetar-scale fields in neutron stars older than ∼106 yrs. However, alternative scenarios of the field evolution exist. I provide a brief review of theoretical and observational results related to the presence of neutron stars with large magnetic field in binaries and discuss perspectives of future studies.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bachetti, M., et al. 2014, Nature 514, 202 CrossRefGoogle Scholar
Bachetti, M., et al. 2021, arXiv: 2112.00339Google Scholar
Barthelmy, S. D. et al. 2016, ATel 8831, 1 Google Scholar
Basko, M.M., & Sunyaev, R.A. 1975, A&A 42,311Google Scholar
Basko, M.M., & Sunyaev, R.A. 1976, MNRAS 175, 395 CrossRefGoogle Scholar
Beniamini, P., Wadiasingh, Z., & Metger, B.D. 2020, MNRAS, 496, 3390 CrossRefGoogle Scholar
Bochenek, C.D. et al. 2020, Nature 587, 59 CrossRefGoogle Scholar
Bogomazov, A.I., & Popov, S.B. 2009, Astronomy reports 53, 325 CrossRefGoogle Scholar
Bonanno, A., Urpin, V., & Belvedere, G. 2005, A&A 440, 199 Google Scholar
Borghese, A., Rea, N., Coti Zelati, F., Tiengo, A., Turolla, R., & Zane, S. 2017, MNRAS 468, 2975 CrossRefGoogle Scholar
Bozzo, E., Ferrigno, C., Oskinova, L., & Ducci, L. 2022, MNRAS 510, 4645 CrossRefGoogle Scholar
Brice, Na., Zane, S., Turolla, R., & Wu, K. 2021, MNRAS 504, 701,CrossRefGoogle Scholar
Brightman, M., et al. 2018, Nat. Astron. 2, 312 CrossRefGoogle Scholar
White, C.J., Burrows, A., Coleman, M.S.B., & Vartanyan, D. 2022, ApJ in press (arXiv: 2111.01814)Google Scholar
Chashkina, A., & Popov, S.B. 2012, New Astron. 17, 594 CrossRefGoogle Scholar
Chen, X., Wang, W., & Tong, H. 2021, J. High Energy Astrophys. 31, 1 CrossRefGoogle Scholar
CHIME/FRB Collaboration 2020, Nature 587, 54 CrossRefGoogle Scholar
CHIME/FRB Collaboration 2020b, Nature 582, 351 CrossRefGoogle Scholar
Clark, J.S., Ritchie, B.W., Najarro, F., Langer, N., & Negueruela, I. 2014, A&A 565, A90 Google Scholar
Cruces, M. et al. 2021, MNRAS 500, 448 CrossRefGoogle Scholar
Cumming, A., Arras, P., & Zweibel, E. 2004, ApJ 609, 999 CrossRefGoogle Scholar
Davies, B., Figer, D.F., Kudritzki, R., Trombley, C., Kouveliotou, C., & Wachter, S. 2009, ApJ 707, 844 CrossRefGoogle Scholar
Doroshenko, V., Santangelo, A., Tsygankov, S.S., & Ji, L. 2021, A&A 647, A165 Google Scholar
Esposito, P., Rea, N., & Israel, G. L. 2021, in: Belloni, T.M., Méndez, M., & Zhang, C. (eds.) Astrophysics and Space Science Library, Vol. 461, “Timing Neutron Stars: Pulsations, Oscillations and Explosions,” Springer: Berlin Heidelberg p. 97 Google Scholar
Fabrika, S. N., Atapin, K. E., Vinokurov, A. S., & Sholukhova, O.N. 2021, Astrophys. Bull. 76, 6 CrossRefGoogle Scholar
Fuller, J. & Lu, W. 2022, MNRAS in press (arXiv: 2201.08407)Google Scholar
Ghosh, P., & Lamb, F. K. 1979, ApJ 234, 296 CrossRefGoogle Scholar
Gourgouliatos, K. N., & Cumming, A., 2014, Phys. Rev. Lett. 112, 171101 CrossRefGoogle Scholar
Heintz, K.E. et al. 2020, ApJ 903, 152 CrossRefGoogle Scholar
Igoshev, A.P., & Popov, S.B. 2018, MNRAS 473, 3204 CrossRefGoogle Scholar
Igoshev, A.P., Popov, S.B., & Hollerbach, R. 2021, Universe 7, 351 CrossRefGoogle Scholar
King, A. & Lasota, J.-P. 2021, arXiv: 2112.03779Google Scholar
Klus, H., Ho, W.C.G., Coe, M.J., Corbet, R.H.D., & Townsend, L.J. 2014, MNRAS 437, 3863 CrossRefGoogle Scholar
Kochanek, C.S. 2021, MNRAS 507, 5832 CrossRefGoogle Scholar
Konar, S. 2017, J. Astrophys. Astr. 38, 47 CrossRefGoogle Scholar
Kouveliotou, C., et al. 1998, Nature 393, 235 CrossRefGoogle Scholar
Langer, N. et al. 2008, in: F. Bresolin, P. Crowther & J. Puls (eds.), Proc. of IAU Symp. 250 “Massive Stars as Cosmic Engines” p. 167 Google Scholar
Levin, Y., Beloborodov, A.M., & Bransgrove, A. 2020, ApJ 895, L30CrossRefGoogle Scholar
Li, C.K. et al. 2021, Nat. Astron. 5, 378 CrossRefGoogle Scholar
Lorimer, D.R., Bailes, M., McLaughlin, M.A., Narkevic, D.J., & Crawford, F. 2007, Science 318, 777 CrossRefGoogle Scholar
Lyutikov, M. Barkov, M.V., & Giannios, D. 2020, ApJ 893, L39CrossRefGoogle Scholar
Makarenko, E.I., Igoshev, A.P., & Kholtygin, A. F. 2021, MNRAS 504, 5813 CrossRefGoogle Scholar
Mereghetti, S., et al. 2020, ApJ 898, L29CrossRefGoogle Scholar
Mushtukov, A.A., Suleimanov, V.F., Tsygankov, S.S., & Poutanen, J. 2015, MNRAS 454, 2539 CrossRefGoogle Scholar
Pons, J.A., & Vigano, D. 2019, Living Rev. Comp. Astroph. 5, 3 CrossRefGoogle Scholar
Popov, S.B. 2020, RNAAS 4, 98 Google Scholar
Popov, S.B., & Postnov, K.A. 2007, arXiv: 0710.02006Google Scholar
Popov, S.B., & Prokhorov, M.E. 2006, A&A, 367, 732 Google Scholar
Popov, S.B., Pons, J.A., Miralles, J.A., Boldin, P.A., & Posselt, B. 2010, MNRAS, 401, 2675 CrossRefGoogle Scholar
Postnov, K.A., Shakura, N.I., Kochetkova, A.Yu., & Hjalmarsdotter, L. 2014, in: E. Bozzo, P. Kretschmar, M. Audard, M. Falanga & C. Ferrigno (eds.), Physics at the Magnetospheric Boundary, EPJ Web of Conf. 64, id. 02002Google Scholar
Postnov, K.A., & Yungelson, L.R. 2014, Liv. Rev. Rel. 17, 3 CrossRefGoogle Scholar
Postnov, K. A., Kuranov, A. G,; Kolesnikov, D. A., Popov, S. B., & Porayko, N. K. 2016, MNRAS 463, 1642 CrossRefGoogle Scholar
Raynaud, R., Guilet, J., Janka, H.T., & Gastine, T. 2020, Science Advances 6, eaay273CrossRefGoogle Scholar
Rajwade, K. M. et al. 2020, MNRAS 495, 3551 CrossRefGoogle Scholar
Revnivtsev, M. & Mereghetti, S. 2016, in: The Strongest Magnetic Fields in the Universe: Space Sciences Series of ISSI (Springer Science+Business Media New York) 54, p. 299 CrossRefGoogle Scholar
Ridnaia, A. et al. 2021, Nat. Astron. 5, 372 CrossRefGoogle Scholar
Schneider, F.R.M., et al. 2019, Nature 574, 211 CrossRefGoogle Scholar
Shakura, N.I., Postnov, K.A., Kochetkova, A.Yu., & Hjalmarsdotter, L. 2013, Phys. Uspekhi 56, 321 CrossRefGoogle Scholar
Shi, C.-S., Zhang, S.-N., & Li, X.-D. 2015, ApJ 813, 91 CrossRefGoogle Scholar
Tavani, M. et al. 2021, Nat. Astron. 5, 401 CrossRefGoogle Scholar
Torres, D.F., Rea, N., Esposito, P., Li, J., Chen, Y., & Zhang, S. 2012, ApJ 744, 106 CrossRefGoogle Scholar
Thompson, C., & Duncan, R.C. 1993, ApJ, 408, 194 CrossRefGoogle Scholar
Truemper, J., Pietsch, W., Reppin, C., Voges, W., Staubert, R., & Kendziorra, E. 1978, ApJ 219, L105CrossRefGoogle Scholar
Tsygankov, S. S., Doroshenko, V., Mushtukov, A. A., Lutovinov, A. A., & Poutanen, J. 2018, MNRAS 479, L134CrossRefGoogle Scholar
Turolla, R., Zane, S., & Watts, A.L. 2015, Rep. Prog. Phys. 78, 116901 CrossRefGoogle Scholar
Walton, D.J. et al. 2018, ApJ 857, L3CrossRefGoogle Scholar
Xiao, D., Wang, F., & Dai, Z. 2021, Science China Physics, Mechanics, and Astronomy 64, id.249501Google Scholar
Xu, K., Li, X., Cui, Z., Li, Q.-C., Shao, Y., Xilong, L., & Liu, J. 2021, Research Astron. Astrophys. accepted (arXiv: 2110.10438)Google Scholar
Yoneda, H., Makishima, K., Enoto, T., Khangulyan, D., Matsumoto, T., & Takahashi, T. 2020, Phys. Rev. Lett 125, 111103 CrossRefGoogle Scholar
Zhang, B. 2020, Nature 587, 45 CrossRefGoogle Scholar