Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T06:28:02.590Z Has data issue: false hasContentIssue false

3D Realistic Modeling of Solar-Type Stars to Characterize the Stellar Jitter

Published online by Cambridge University Press:  20 January 2023

Irina Kitiashvili
Affiliation:
NASA Ames Research Center Moffett Field, MS 258-6, Mountain View, CA, USA email: irina.n.kitiashvili@nasa.gov, alan.a.wray@nasa.gov
Samuel Granovsky
Affiliation:
NASA Ames Research Center Moffett Field, MS 258-6, Mountain View, CA, USA email: irina.n.kitiashvili@nasa.gov, alan.a.wray@nasa.gov New Jersey Institute of Technology 323 Dr Martin Luther King Jr Blvd, Newark, NJ, USA email: sg2249@njit.edu Universities Space Research Association 7178 Columbia Gateway Drive, Columbia, MD, USA
Alan Wray
Affiliation:
NASA Ames Research Center Moffett Field, MS 258-6, Mountain View, CA, USA email: irina.n.kitiashvili@nasa.gov, alan.a.wray@nasa.gov
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Detection of Earth-mass planets with the radial velocity method requires a precision of about 10cm/s to identify a signal caused by such a planet. At the same time, noise originating in the photospheric and subphotospheric layers of the parent star is of the order of meters per second. Understanding the physical nature of the photospheric noise (so-called stellar jitter) and characterizing it are critical for developing techniques to filter out these unwanted signals. We take advantage of current computational and technological capabilities to create 3D realistic models of stellar subsurface convection and atmospheres to characterize the photospheric jitter. We present 3D radiative hydrodynamic models of several solar-type target stars of various masses and metallicities, discuss how the turbulent surface dynamics and spectral line characteristics depend on stellar properties, and provide stellar jitter estimates for these stars.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
To the extent this is a work of the US Government, it is not subject to copyright protection within the United States.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© National Aeronautics and Space Administration, 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abramenko, V. I., Yurchyshyn, V. B., Goode, P. R., Kitiashvili, I. N., & Kosovichev, A. G. 2012, ApJ, 756, L27 10.1088/2041-8205/756/2/L27CrossRefGoogle Scholar
Bastien, F. A., Stassun, K. G., Basri, G., & Pepper, J. 2016, ApJ, 818, 43 10.3847/0004-637X/818/1/43CrossRefGoogle Scholar
Bellotti, S., Petit, P., Morin, J., et al. 2022, A&A, 657, A107 10.1051/0004-6361/202141812CrossRefGoogle Scholar
Cegla, H. M., Shelyag, S., Watson, C. A., & Mathioudakis, M. 2013, ApJ, 763, 95 10.1088/0004-637X/763/2/95CrossRefGoogle Scholar
Cegla, H. M., Watson, C. A., Marsh, T. R., et al. 2012, MNRAS, 421, L54 10.1111/j.1745-3933.2011.01205.xCrossRefGoogle Scholar
Collier Cameron, A., Ford, E. B., Shahaf, S., et al. 2021, MNRAS, 505, 1699 10.1093/mnras/stab1323CrossRefGoogle Scholar
Dravins, D., Ludwig, H.-G., Dahlén, E., & Pazira, H. 2017, A&A, 605, A91 10.1051/0004-6361/201730901CrossRefGoogle Scholar
Dravins, D., Ludwig, H.-G., & Freytag, B. 2021 a, A&A, 649, A1610.1051/0004-6361/202039995CrossRefGoogle Scholar
Dravins, D., Ludwig, H.-G., & Freytag, B. 2021 b, A&A, 649, A1710.1051/0004-6361/202039997CrossRefGoogle Scholar
Feautrier, P. 1964, Comptes Rendus Academie des Sciences (serie non specifiee), 258, 3189Google Scholar
Fischer, D. A., Anglada-Escude, G., Arriagada, P., et al. 2016, PASP, 128, 066001 10.1088/1538-3873/128/964/066001CrossRefGoogle Scholar
Frutiger, C., Solanki, S. K., Fligge, M., & Bruls, J. H. M. J. 2000, A&A, 358, 1109 Google Scholar
Kitiashvili, I. N., Kosovichev, A. G., Mansour, N. N., & Wray, A. A. 2016, ApJ, 821, L17 10.3847/2041-8205/821/1/L17CrossRefGoogle Scholar
Luhn, J. K., Wright, J. T., Howard, A. W., & Isaacson, H. 2020, AJ, 159, 235 10.3847/1538-3881/ab855aCrossRefGoogle Scholar
Meunier, N., Mignon, L., & Lagrange, A. M. 2017, A&A, 607, A124 10.1051/0004-6361/201731017CrossRefGoogle Scholar
Oshagh, M., Santos, N. C., Figueira, P., et al. 2017, A&A, 606, A107 10.1051/0004-6361/201731139CrossRefGoogle Scholar
Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3 10.1088/0067-0049/192/1/3CrossRefGoogle Scholar
Plavchan, P., Latham, D., Gaudi, S., et al. 2015, arXiv e-prints, arXiv:1503.01770Google Scholar
Sowmya, K., Nèmec, N. E., Shapiro, A. I., et al. 2021, ApJ, 919, 94 10.3847/1538-4357/ac111bCrossRefGoogle Scholar
Wray, A. A., Bensassi, K., Kitiashvili, I. N., Mansour, N. N., & Kosovichev, A. G. 2015, arXiv e-prints, arXiv:1507.07999Google Scholar
Wray, A. A., Bensassiy, K., Kitiashvili, I. N., Mansour, N. N., & Kosovichev, A. G. 2018, Realistic Simulations of Stellar Radiative MHD, ed. Rozelot, J. P. & Babayev, E. S., 3910.1051/978-2-7598-2196-9-004CrossRefGoogle Scholar