Skip to main content Accessibility help

Triple Factorizations and Supersolubility of Finite Groups

  • Adolofo Ballester-Bolinches (a1) and Luis M. Ezquerro (a2)


In this paper we analyse the structure of a finite group of minimal order among the finite non-supersoluble groups possessing a triple factorization by supersoluble subgroups of pairwise relatively prime indices. As an application we obtain some sufficient conditions for a triple factorized group by supersoluble subgroups of pairwise relatively prime indices to be supersoluble. Many results appear as consequences of our analysis.



Hide All
1. Asaad, M. and Shaalan, A., On supersolvability of finite groups, Arch. Math. 53 (1989), 318326.
2. BallesterBolinches, A., Esteban-Romero, R. and Asaad, M., Products of finite groups, De Gruyter Expositions in Mathematics, Volume 53 (Walter de Gruyter, Berlin, 2010).
3. Doerk, K., Minimal nicht überauflösbare Gruppen, Math. Z. 91 (1966), 198205.
4. Doerk, K. and Hawkes, T., Finite soluble groups, De Gruyter Expositions in Mathematics, Volume 54 (Walter de Gruyter, Berlin, 1992).
5. Flowers, N. and Wakefield, T. P., On a group with three supersolvable subgroups of pairwise relatively prime indices, Arch. Math. 95 (2010), 309315.
6. Friesen, T. K., Products of normal supersolvable groups, Proc. Am. Math. Soc. 30 (1971), 4648.
7. Huppert, B., Endliche Gruppen I, Grundlehren der mathematischen Wissenschaften, Volume 134 (Springer, 1967).
8. Kegel, O. H., Zur Struktur mehrfach faktorisierbarer endlicher Gruppen, Math. Z. 87 (1965), 4248.
9. Wang, K., Finite groups with two supersolvable subgroups of coprime indices, Northeast Math. J. 17 (2001), 219223.


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed