Skip to main content Accessibility help
×
Home

Symmetry of Lie algebras associated with (ε, δ)-Freudenthal-Kantor triple system

  • Noriaki Kamiya (a1) and Susumu Okubo (a2)

Abstract

Symmetry groups of Lie algebras and superalgebras constructed from (∈, δ)-Freudenthal-Kantor triple systems have been studied. In particular, for a special (ε, ε)-Freudenthal–Kantor triple, it is the SL(2) group. Also, the relationship between two constructions of Lie algebras from structurable algebras has been investigated.

Copyright

References

Hide All
1. Allison, B. N., A class of nonassociative algebras with involution containing the class of Jordan algebras, Math. Annalen 237 (1978), 133156.
2. Allison, B. N. and Faulkner, J. R., Non-associative coefficient algebras for Steinberg unitary Lie algebras, J. Alg. 161 (1993), 119.
3. Allison, B. N., Benkart, G. and Gao, Y., Lie algebras graded by the root systems BC r , r ⩾ 2, Memoirs of the American Mathematical Society, Volume 158 (American Mathematical Society, Providence, RI, 2002).
4. Benkart, G. and Smirnov, O., Lie algebras graded by the root system BC 1 , J. Lie Theory 13 (2003), 91132.
5. Elduque, A., The magic square and symmetric composition, Rev. Mat. Ibero. 20 (2004), 477493.
6. Elduque, A. and Okubo, S., Lie algebras with S4-action and structurable algebras, J. Alg. 307 (2007), 864890.
7. Elduque, A. and Okubo, S., S4-symmetry on the Tits construction of exceptional Lie algebras and superalgebras, Publ. Mat. 52 (2008), 315346.
8. Elduque, A. and Okubo, S., Lie algebras with S3 or S4-action and generalized Malcev algebras, Proc. R. Soc. Edinb. A 139 (2009), 321357.
9. Elduque, A. and Okubo, S., Special Freudenthal–Kantor triple systems and Lie algebras with dicyclic symmetry, Proc. R. Soc. Edinb. A 141 (2011), 12251262.
10. Elduque, A., Kamiya, N. and Okubo, S., Left unital Kantor triple systems and structurable algebra, Linear Multilinear Alg. 62(10) (2014), 12931313.
11. Elgendy, H., Universal associative envelopes of nonassociative triple systems, Commun. Alg. 42(4) (2014), 17851810.
12. Kamiya, N., A construction of simple Lie algebras over C from balanced Freudenthal–Kantor triple systems, in Contributions to general algebra, Volume 7, pp. 205213 (Hölder-Pickler-Tempsky, Vienna, 1991).
13. Kamiya, N. and Okubo, S., On δ-Lie supertriple systems associated with (ε, δ)- Freudenthal–Kantor triple systems, Proc. Edinb. Math. Soc. 43 (2000), 243260.
14. Kamiya, N., Mondoc, D. and Okubo, S., A structure theory of (–1, –1)-Freudenthal–Kantor triple systems, Bull. Austral. Math. Soc. 81 (2010), 132155.
15. Kobayashi, S. and Nomizu, K., Foundations of differential geometry, I (Wiley, 1963).
16. Kobayashi, S. and Nomizu, K., Foundations of differential geometry, II (Wiley, 1968).
17. Kochetev, M., Gradings on finite-dimensional simple Lie algebras, Acta Appl. Math. 108 (2009), 101129.
18. Meyberg, K., Eine Theorie der Freudenthalschen Triple systeme, I, II, Indagationes Math. 30 (1968), 162190.
19. Okubo, S., Symmetric triality relations and structurable algebra, Linear Alg. Applic. 396 (2005), 189222.
20. Yamaguti, K. and Ono, S., On representations of Freudenthal–Kantor triple system U(ε, δ), Bull. Fac. School Educ. Hiroshima Univ. 7 (1984), 4351.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

Symmetry of Lie algebras associated with (ε, δ)-Freudenthal-Kantor triple system

  • Noriaki Kamiya (a1) and Susumu Okubo (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.