Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-10T21:26:09.233Z Has data issue: false hasContentIssue false

Some observations on algorithms of the Gauss-Borchardt type

Published online by Cambridge University Press:  20 January 2009

Jaak Peetre
Affiliation:
Matematiska InstitutionenStockholms UniversitetBox 6701S-113 85 StockholmSweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A one parameter family of algorithms is studied, which contains both the arithmetic-geometric mean of Gauss and its generalization by Borchardt, recently studied by J. and P. Borwein. We prove that the presence of an asymptotic formula for such an algorithm is, in view of the Poisson summation formula, equivalent to the vanishing of certain integrals. In the case of Gauss and Borchardt the latter involve theta functions. Finally, we investigate the question of convergence of the algorithm for complex values, thereby generalizing the corresponding result of Gauss.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1991

References

REFERENCES

1.Arazy, J., Claesson, T., Janson, S. and Peetre, J., Means and their iterations, in Proc. of the Nineteenth Nordic Congress of Mathematicians, Reykjavík, 1984 (Stefanson, Jon R. (ed.), Icelandic Math. Soc., Science Inst., University of Iceland, Reykjavik, 1985), 191212.Google Scholar
2.Borchardt, C.-W., Ueber das arithmetisch-geometrische Mittel aus vier Elementen, Monatsh. Akad. Wiss. Berlin (1876), 611621.Google Scholar
3.Borwein, J. M. and Borwein, P. M., Pi and the AGM—A Study in Analytic Number Theory and Computational Complexity (John Wiley, New York, 1987).Google Scholar
4.Borwein, J. M. and Borwein, P. M., On the mean iteration , Math. Comp. 53 (1989), 311326.Google Scholar
5.Borwein, J. M. and Borwein, P. M., A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc. 323 (1991), 691701.Google Scholar
6.Borwein, J. M. and Borwein, P. M., Quadratic Mean Iterations, in preparation.Google Scholar
7.Cox, D. A., The arithmetic-geometric mean of Gauss, Enseign. Math. 30 (1984), 275330.Google Scholar
8.Gauss, C. F., Bestimmung der Anziehung eines elliptischen Ringes. Nachlass zur Theorie des arithmetisch-geometrischen Mittels, (Übersetz von Dr Harald Geppert, Ostwalds Klassiker der Exakten Wissenschaften 225, Akademische Verlagsgesellschaft, Leipzig, 1927).Google Scholar
9.Nishiwada, K., A holomorphic structure of the arithmetic-geometric mean of Gauss, Proc. Japan Acad. Ser. A64 (1988), 322324.Google Scholar
10.Peetre, J., Some unsolved problems, in Colloquia Mathematica Societatis Janos Bolyai 49, (Alfred Haar Memorial Conference, Budapest (Hungary), 1985, North-Holland, Amsterdam, 1986), 711735.Google Scholar
11.Peetre, J., Generalizing the arithmetic-geometric mean—a hapless computer experiment, Internat. J. Math. Sci. 12 (1989), 235246.Google Scholar