Skip to main content Accessibility help

Numerical Approximations to Extremal Toric Kähler Metrics with Arbitrary Kähler Class

  • Stuart James Hall (a1) and Thomas Murphy (a2)


We develop new algorithms for approximating extremal toric Kähler metrics. We focus on an extremal metric on , which is conformal to an Einstein metric (the Chen–LeBrun–Weber metric). We compare our approximation to one given by Bunch and Donaldson and compute various geometric quantities. In particular, we demonstrate a small eigenvalue of the scalar Laplacian of the Einstein metric that gives numerical evidence that the Einstein metric is conformally unstable under Ricci flow.



Hide All
1. Abreu, M., Kähler geometry of toric varieties and extremal metrics, Int. J. Math. 9(6) (1998), 641651.
2. Abreu, M., Kähler geometry of toric manifolds in symplectic coordinates, Fields Institute Communications, Volume 35, pp. 124 (American Mathematical Society, Providence, RI, 2003).
3. Braun, V., Brelidze, T., Douglas, M. R. and Ovrut, B. A., Eigenvalues and eigenfunctions of the scalar Laplace operator on Calabi–Yau manifolds, J. High Energy Phys. 2008 (2008), article 120.
4. Bunch, R. S. and Donaldson, S. K., Numerical approximations to extremal metrics on toric surfaces, in Handbook of geometric analysis, Advanced Lectures in Mathematics, Volume 7, Number 1, pp. 128 (International Press, 2008).
5. Calabi, E., Extremal Kähler metrics, Annals of Mathematics Studies, Volume 102, pp. 259290 (Princeton University Press, 1982).
6. Cao, H.-D. and Chenxu, H., Linear stability of Perelman's ν-entropy on symmetric spaces of compact type, J. Reine Angew. Math. 353(3) (2015), 229246.
7. Cao, H.-D. and Zhu, M., On second variation of Perelman's shrinker entropy, Math. Ann. 353(3) (2012), 747763.
8. Cao, H.-D., Hamilton, R. and Ilmanen, T., Gaussian density and stability for some Ricci solitons, Preprint (arXiv:0404.165; 2004).
9. Chen, X. X., LeBrun, C. and Weber, B., On conformally Kähler, Einstein manifolds, J. Am. Math. Soc. 21(4) (2008), 11371168.
10. Derdzinski, A., Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983), 405433.
11. Donaldson, S. K., Interior estimates for solutions of Abreu's equation, Collectanea Math. 56(2) (2005), 103142.
12. Donaldson, S. K., Kähler geometry on toric manifolds and some other manifolds with large symmetry, in Handbook of geometric analysis, Advanced Lectures in Mathematics, Volume 7, Number 1, pp. 2975 (International Press, 2008).
13. Donaldson, S. K., Some numerical results in complex differential geometry, Pure Appl. Math. Q. 5(2) (2009), 571618.
14. Doran, C., Headrick, M., Herzog, C., Kantor, J. and Wiseman, T., Numerical Kähler–Einstein on the third del Pezzo, Commun. Math. Phys. 282(2) (2008), 357393.
15. Flannery, B. P., Press, W. H., Teukolsky, S. A. and Vetterling, W. T., Numerical recipes: the art of scientific computing, 3rd edn (Cambridge University Press, 2007).
16. Gibbons, G. and Hartnoll, S., Graviational instability in higher dimensions, Phys. Rev. D66 (2002), 2464.
17. Guillemin, V., Kähler structures on toric varieties, J. Diff. Geom. 40(2) (1994), 285309.
18. Hall, S. J. and Murphy, T., On the spectrum of the Page and Chen–LeBrun–Weber metrics, Annals Global Analysis Geom. 46(1) (2014), 87101.
19. Hall, S. J. and Murphy, T., Approximating Ricci solitons and quasi-Einstein metrics on toric surfaces, New York J. Math. 22 (2016), 615635.
20. Hall, S. J., Haslhofer, R. and Siepmann, M., The stability inequality for Ricci-flat cones, J. Geom. Analysis 24(1) (2014), 472494.
21. Headrick, M. and Nassar, A., Energy functionals and Calabi–Yau metrics, Adv. Theor. Math. Phys. 17 (2013), 867902.
22. Headrick, M. and Wiseman, T., Numerical Ricci-flat metrics on K3, Class. Quant. Grav. 22(3) (2005), 49314960.
23. Headrick, M. and Wiseman, T., Numerical Kähler–Ricci soliton on the second del Pezzo, Preprint (arXiv:0706.2329v1; 2007).
24. Keller, J., Ricci iterations on Kähler classes, J. Inst. Math. Jussieu 8(4) (2009), 743768.
25. LeBrun, C., Einstein metrics on complex surfaces, in Geometry and Physics, Aarhus, 1995 (ed. Pedersen, H., Andersen, J., Dupont, J. and Swann, A.), Lecture Notes in Pure and Applied Mathematics, Volume jt, pp. 167176 (Marcel Dekker, New York, 1997).
26. LeBrun, C., On Einstein Hermitian 4-manifolds, J. Diff. Geom. 90 (2012), 277302.
27. Page, D., A compact rotating gravitational instanton, Phys. Lett. B79 (1979), 235238.
28. Perelman, G., The entropy formula for the Ricci flow and its geometric applications, Preprint (arXiv:math/0211159v1; 2002).
29. Young, R. E., Semiclassical instability of gravity with positive cosmological constant, Phys. Rev. D28(10) (1983), 24362438.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification

Related content

Powered by UNSILO

Numerical Approximations to Extremal Toric Kähler Metrics with Arbitrary Kähler Class

  • Stuart James Hall (a1) and Thomas Murphy (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.