Skip to main content Accessibility help
×
Home

The Laitinen Conjecture for finite non-solvable groups

  • Krzysztof Pawałowski (a1) and Toshio Sumi (a2)

Abstract

For any finite group G, we impose an algebraic condition, the Gnil-coset condition, and prove that any finite Oliver group G satisfying the Gnil-coset condition has a smooth action on some sphere with isolated fixed points at which the tangent G-modules are not isomorphic to each other. Moreover, we prove that, for any finite non-solvable group G not isomorphic to Aut(A6) or PΣL(2, 27), the Gnil-coset condition holds if and only if rG ≥ 2, where rG is the number of real conjugacy classes of elements of G not of prime power order. As a conclusion, the Laitinen Conjecture holds for any finite non-solvable group not isomorphic to Aut(A6).

Copyright

References

Hide All
1.Atiyah, M. F. and Bott, R., A Lefschetz fixed point formula for elliptic complexes, II, Applications, Annals Math. 88 (1968), 451491.
2.Bredon, G. E., Representations at fixed points of smooth actions of compact groups, Annals Math. (2) 89 (1969), 515532.
3.Bredon, G. E., Introduction to compact transformation groups, Pure and Applied Mathematics, Volume 6 (Academic Press, 1972).
4.Cappell, S. E. and Shaneson, J. L., Fixed points of periodic maps, Proc. Natl Acad. Sci. USA 77 (1980), 50525054.
5.Cappell, S. E. and Shaneson, J. L., Fixed points of periodic differentiable maps, Invent. Math. 68 (1982), 119.
6.Cappell, S. E. and Shaneson, J. L., Representations at fixed points, in Group actions on manifolds (ed. Schultz, R.), Contemporary Mathematics, Volume 36, pp. 151158 (American Mathematical Society, Providence, RI, 1985).
7.Cho, E. C., Smith equivalent representations of generalized quaternion groups, in Group actions on manifolds (ed. Schultz, R.), Contemporary Mathematics, Volume 36, pp. 317322 (American Mathematical Society, Providence, RI, 1985).
8.Cho, E. C. and Suh, D. Y., Induction in equivariant K-theory and s-Smith equivalence of representations, in Group actions on manifolds (ed. Schultz, R.), Contemporary Mathematics, Volume 36, pp. 311315 (American Mathematical Society, Providence, RI, 1985).
9.Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of finite groups: maximal subgroups and ordinary characters for simple groups (Oxford University Press, 1985).
10.Dovermann, K. H. and Herzog, M., Gap conditions for representations of symmetric groups, J. Pure Appl. Alg. 119 (1987), 113137.
11.Dovermann, K. H. and Petrie, T., Smith equivalence of representations for odd order cyclic groups, Topology 24 (1985), 283305.
12.Dovermann, K. H. and Washington, L. D., Relations between cyclotomic units and Smith equivalence of representations, Topology 28 (1989), 8189.
13.Dovermann, K. H., Petrie, T. and Schultz, R., Transformation groups and fixed point data, in Group actions on manifolds (ed. Schultz, R.), Contemporary Mathematics, Volume 36, pp. 159189 (American Mathematical Society, Providence, RI, 1985).
14.Dovermann, K. H., and Suh, D. Y., Smith equivalence for finite abelian groups, Pac. J. Math. 152 (1992), 4178.
15.Fulton, W. and Harris, J., Representation theory: a first course, Graduate Texts in Mathematics, Volume 129 (Springer, 1991).
16. GAP Group, The, GAP: Groups, Algorithms, and Programming, Version 4.4 (2006; available at www.gap-system.org).
17.Gorenstein, D., Lyons, R. and Solomon, R., The classification of the finite simple groups, Volume 1, American Mathematical Society Mathematical Surveys and Monographs, Volume 40 (American Mathematical Society, Providence, RI, 1994).
18.Illman, S., Representations at fixed points of actions of finite groups on spheres, in Current trends in algebraic topology, Conference Proceedings, Canadian Mathematical Society, Volume 2, Part 2, pp. 135155 (American Mathematical Society, Providence, RI, 1982).
19.James, G. and Liebeck, M., Representations and characters of groups, 2nd edn (Cambridge University Press, 2001).
20.Ju, X. M., The Smith set of the group S 5 × C 2 × … × C 2, Osaka J. Math. 47 (2010), 215236.
21.Kawakubo, K., The theory of transformation groups (Oxford University Press, 1991).
22.Koto, A., Morimoto, M. and Qi, Y., The Smith sets of finite groups with normal Sylow 2-subgroups and small nilquotients, J. Math. Kyoto Univ. 48 (2008), 219227.
23.Laitinen, E. and Morimoto, M., Finite groups with smooth one fixed point actions on spheres, Forum Math. 10 (1998), 479520.
24.Laitinen, E. and Pawałowski, K., Smith equivalence of representations for finite perfect groups, Proc. Am. Math. Soc. 127 (1999), 297307.
25.Laitinen, E., Morimoto, M. and Pawałowski, K., Deleting-inserting theorem for smooth actions of finite non-solvable groups on spheres, Comment. Math. Helv. 70 (1995), 1038.
26.Masuda, M., and Petrie, T., Lectures on transformation groups and Smith equivalence, in Group actions on manifolds (ed. Schultz, R.), Contemporary Mathematics, Volume 36, pp. 191242 (American Mathematical Society, Providence, RI, 1985).
27.Milnor, J. W., Whitehead torsion, Bull. Am. Math. Soc. 72 (1966), 358426.
28.Morimoto, M., Equivariant surgery theory: deleting-inserting theorem of fixed point manifolds on spheres and disks, K-Theory 15 (1998), 1332.
29.Morimoto, M., Smith equivalent Aut(A 6)-representations are isomorphic, Proc. Am. Math. Soc. 136 (2008), 36833688.
30.Morimoto, M., Nontrivial (G)-matched -related pairs for finite gap Oliver groups, J. Math. Soc. Jpn 62(2) (2010), 623647.
31.Morimoto, M. and Pawałowski, K., The equivariant bundle subtraction theorem and its applications, Fund. Math. 161 (1999), 279303.
32.Morimoto, M. and Pawałowski, K., Smooth actions of finite Oliver groups on spheres, Topology 42 (2003), 395421.
33.Morimoto, M. and Qi, Y., Study of Smith sets of gap Oliver groups, in Transformation groups from a new viewpoint, RIMS Kokyuroku, Volume 1670, 126139 (Kyoto University, 2009).
34.Morimoto, M. and Qi, Y., The primary Smith sets of finite Oliver groups, in Group actions and homogeneous spaces, Proc. Bratislava Topology Symp., 7–11 September 2009, p. 6173 (Comenius University, Bratislava, 2010).
35.Morimoto, M., Sumi, T. and Yanagihara, M., Finite groups possessing gap modules, in Geometry and topology: Aarhus (ed. Grove, K., Madsen, I. H. and Pedersen, E. K.), Contemporary Mathematics, Volume 258, pp. 329342 (American Mathematical Society, Providence, RI, 2000).
36.Oliver, B., Fixed point sets and tangent bundles of actions on disks and Euclidean spaces, Topology 35 (1996), 583615.
37.Oliver, R., Fixed point sets of group actions on finite acyclic complexes, Comment. Math. Helv. 50 (1975), 155177.
38.Pawałowski, K., Group actions with inequivalent representations at fixed points, Math. Z. 187 (1984), 2947.
39.Pawałowski, K., Smith equivalence of group modules and the Laitinen conjecture: a survey, in Geometry and topology: Aarhus (ed. Grove, K., Madsen, I. H., Pedersen, E. K.), Contemporary Mathematics, Volume 258, pp. 43350 (American Mathematical Society, Providence, RI, 2000).
40.Pawałowski, K. and Solomon, R., Smith equivalence and finite Oliver groups with Laitinen number 0 or 1, Alg. Geom. Topology 2 (2002), 843895.
41.Pawałowski, K. and Sumi, T., Finite groups with Smith equivalent, nonisomorphic representations, in Proc. 33rd Symp. on Transformation Groups (ed. Kawakami, T.), pp. 6876 (Wing, Wakayama, 2007).
42.Pawałowski, K. and Sumi, T., Smith equivalent group modules, in Proc. 34th Symp. on Transformation Groups (ed. Kawakami, T. and Yamasaki, M.), pp. 6875 (Wing, Wakayama, 2007).
43.Pawałowski, K. and Sumi, T., The Laitinen Conjecture for finite solvable Oliver groups, Proc. Am. Math. Soc. 137 (2009), 21472156.
44.Petrie, T., G sugery, I, A survey, in Algebraic and geometric topology, Lecture Notes in Mathematics, Volume 664, pp. 197233 (Springer, 1978).
45.Petrie, T., Pseudoequivalences of G-manifolds, Proc. Symp. Pure Math. 32 (1978), 169210.
46.Petrie, T., Three theorems in transformation groups, in Algebraic topology: Aarhus, Lecture Notes in Mathematics, Volume 763, pp. 549572 (Springer, 1979).
47.Petrie, T., The equivariant J homomorphhism and Smith equivalence of representations, Current trends in algebraic topology, Conference Proceedings, Canadian Mathematical Society, Volume 2, Part 2, pp. 223233 (American Mathematical Society, Providence, RI, 1982).
48.Petrie, T., Smith equivalence of representations, Math. Proc. Camb. Phil. Soc. 94 (1983), 6199.
49.Petrie, T. and Randall, J., Transformation groups on manifolds, Monographs and Textbooks in Pure and Applied Mathematics, Volume 82 (Dekker, New York, 1984).
50.Petrie, T. and Randall, J., Spherical isotropy representations, Publ. Math. IHES 62 (1985), 540.
51.Sanchez, C. U., Actions of groups of odd order on compact orientable manifolds, Proc. Am. Math. Soc. 54 (1976), 445448.
52.Schultz, R., Problems submitted to the AMS Summer Research Conference on Group Actions, collected and edited by Schultz, R., in Group actions on manifolds (ed. Schultz, R.), Contemporary Mathematics, Volume 36, pp. 513568 (American Mathematical Society, Providence, RI, 1985).
53.Serre, J.-P., Linear representations of finite groups, Graduate Texts in Mathematics, Volume 42 (Springer, 1977).
54.Smith, P. A., New results and old problems in finite transformation groups, Bull. Am. Math. Soc. 66 (1960), 401415.
55.Steinberg, R., The representations of GL(3, q), GL(4, q), PGL(3, q) and PGL(4, q), Can. J. Math. 3 (1951), 225235.
56.Suh, D. Y., s-Smith equivalent representations of finite abelian groups, in Group actions on manifolds (ed. Schultz, R.), Contemporary Mathematics, Volume 36, pp. 323329 (American Mathematical Society, Providence, RI, 1985).
57.Sumi, T., Gap modules for direct product groups, J. Math. Soc. Jpn 53 (2001), 975990.
58.Sumi, T., Gap modules for semidirect product groups, Kyushu J. Math. 58 (2004), 3358.
59.Sumi, T., Finite groups possessing Smith equivalent, nonisomorphic representations, in The theory of transformation groups and its representations, RIMS Kokyuroku, Volume 1569, pp. 170179 (Kyoto University, 2007).
60.Sumi, T., Smith problem for a finite Oliver group with non-trivial center, in Geometry of transformation groups and related topics, RIMS Kokyuroku, Volume 1612, pp. 196204 (Kyoto University, 2008).
61.Sumi, T., Smith set for a nongap Oliver group, in Transformation groups from a new viewpoint, RIMS Kokyuroku, Volume 1670, pp. 2533 (Kyoto University, 2009).
62.Sumi, T., Representation spaces fulfilling the gap hypothesis, in Group Actions and Homogeneous Spaces, Proc. Bratislava Topology Symp., 7–11 September 2009, pp. 99116 (Comenius University, Bratislava, 2010).
63.Sumi, T., The gap hypothesis for finite groups which have an abelian quotient group not of order a power of 2, J. Math. Soc. Jpn 64 (2012), 91106.
64.Dieck, T. tom, Transformation groups, de Gruyter Studies in Mathematics, Volume 8 (Walter de Gruyter, 1987).

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed