Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-20T23:43:58.590Z Has data issue: false hasContentIssue false

DESIGN OF AND WITH SENSING MACHINE ELEMENTS - USING THE EXAMPLE OF A SENSING ROLLING BEARING

Published online by Cambridge University Press:  27 July 2021

Tobias Schirra*
Affiliation:
TU Darmstadt
Georg Martin
Affiliation:
TU Darmstadt
Eckhard Kirchner
Affiliation:
TU Darmstadt
*
Schirra, Tobias, TU Darmstadt, Institute for product development and machine elements, Germany, schirra@pmd.tu-darmstadt.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper the development process of a sensing rolling bearing is presented, from which finally design rules for sensing machine elements are derived. In the first step, the requirements of the users are determined. It turns out user of sensing machine elements want to continue to use the advantage of the standardized machine elements and costs should not be incurred by redesign or complex assembly. With these requirements the development of the sensing rolling bearing is started, in which the different presented technologies are reviewed for their suitability regarding the requirements. With the selected technology measuring the electric rolling bearing impedance to estimate rolling bearing loads, a first prototype is developed by creating a functional structure of the product and focusing on the partial solution of the most relevant partial functions. This prototype is then tested with regard to its functionality. Finally, generalizable design rules for sensing machine elements are derived from the development.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2021. Published by Cambridge University Press

References

Bechev, D., Sauer, B., Kölsch, P., Herder, C. F., Aurich, J., Wiegel, T. and Seewig, J. (2017) ‘Strategy for the diagnosis and prediction of machine failures for developing availability-oriented business models in capital goods’, International Scientific Journal “Industry 4.0”, vol. 2, no. 2, pp. 8690.Google Scholar
Brecher, C., Falker, J. and Fey, M. (2019) ‘Untersuchung des Betriebsverhaltens radial belasteter Hochgeschwindigkeitswälzlager’, in 13. VDI-Fachtagung Gleit- und Wälzlagerungen, pp. 197208.10.51202/9783181023488-197CrossRefGoogle Scholar
Brecher, C., Fey, M., Brückner, C. and Falker, J. (2014) ‘Überwachung des Betriebszustandes von Wälzlagern mittels akustischer Oberflächenwellen’, in 17, ITG/GMA Symposium Sensors and Measuring Systems, Berlin, Germany, VDE, pp. 16.Google Scholar
Dahlke, H. (1994) Handbuch Wälzlager-Technik: Bauarten, Gestaltung, Betrieb, Braunschweig, Wiesbaden, Vieweg.10.1007/978-3-663-01972-5CrossRefGoogle Scholar
Gwosch, T. (2019) Antriebsstrangprüfstände zur Ableitung von Konstruktionszielgrößen in der Produktentwicklung handgehaltener Power-Tools, Karlsruhe, Karlsruher Institut für Technologie.Google Scholar
Harris, T. A. (2001) Rolling bearing analysis, 4th edn, New York, NY, Wiley.Google Scholar
Kirchner, E. (2020) Werkzeuge und Methoden der Produktentwicklung: Von der Idee zum erfolgreichen Produkt, Berlin, Heidelberg, Springer Berlin Heidelberg.10.1007/978-3-662-61762-5CrossRefGoogle Scholar
Martin, G., Schirra, T. and Kirchner, E. (2020) ‘Experimental High Frequency Analysis of the Electric Impedance of Rolling Bearings’, in Bearingworld 2020.Google Scholar
Martin, G., Schork, S., Vogel, S. and Kirchner, E. (2018) ‘MME – Potentiale durch mechatronische Maschinenelemente’, Konstruktion, vol. 70, 01-02, pp. 7175.10.37544/0720-5953-2018-01-02-71CrossRefGoogle Scholar
Martin, G., Vogel, S. and Kirchner, E. (2018) ‘Sensor Integrating Machine Elements – Key to In-Situ Measurements in mechanical Engineering’, in 23rd International Seminar on High Technology, pp. 6375.Google Scholar
Schirra, T., Martin, G. and Kirchner, E. (2019) ‘Untersuchung elektrischer Eigenschaften von Wälzlagern zur Entwicklung eines Sensorlagers: Analyse zum Einfluss der Last und Drehzahl auf die Wälzlagerimpedanz’, in 13. VDI-Fachtagung Gleit- und Wälzlagerungen, pp. 367372.10.51202/9783181023488-367CrossRefGoogle Scholar
Schirra, T., Martin, G., Vogel, S. and Kirchner, E. (2018) ‘Ball bearings as sensors for systematical combination of load and failure monitoring’, Proceedings of the DESIGN 2018 15th International Design Conference, May, 21-24, 2018, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia; The Design Society, Glasgow, UK, pp. 30113022.10.21278/idc.2018.0306CrossRefGoogle Scholar
Slatter, R. (2018) ‘Robust Magnetic Sensors for Availability-oriented Product-Service Systems’, in 12th Smart Systems Integration Conference, pp. 207214.Google Scholar
Stanula, P., Praetzas, C., Kohn, O., Metternich, J., Weigold, M. and Buchwald, A. (2020) ‘“Stress-oriented, data-based payment model for machine tools”’, Procedia CIRP, vol. 93, pp. 15261531.10.1016/j.procir.2020.03.080CrossRefGoogle Scholar
Tyrrel, M. (2019) ‘Sensing wear on the spindle’, Production Engine Solutions.Google Scholar
Vogel, S. and Kirchner, E. (2019) ‘Simple Integration of Sensory Functions’, Proceedings of the Design Society: International Conference on Engineering Design, vol. 1, no. 1, pp. 37113720.Google Scholar
Vorwerk-Handing, G., Gwosch, T., Schork, S., Kirchner, E. and Matthiesen, S. (2020) ‘Classification and examples of next generation machine elements’, Forschung im Ingenieurwesen, vol. 84, no. 1, pp. 2132.10.1007/s10010-019-00382-1CrossRefGoogle Scholar
Winkelmann, C. H. (2014) Mikro-Elektrostrukturieren planarer und zylindrischer Oberflächen mittels strukturierter, flexibler und mehrlagiger Gegenelektroden mit integriertem fluidischen Kanal, Dissertation, Bremen, Universität Bremen.Google Scholar