Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-16T12:51:25.940Z Has data issue: false hasContentIssue false

6 degree of freedom positional object tracking for physical prototype digitisation

Published online by Cambridge University Press:  16 May 2024

Michael Wyrley-Birch
Affiliation:
University of Bristol, United Kingdom
Aman Kukreja
Affiliation:
University of Bristol, United Kingdom
James Gopsill
Affiliation:
University of Bristol, United Kingdom
Christopher Michael Jason Cox
Affiliation:
University of Bristol, United Kingdom
Chris Snider*
Affiliation:
University of Bristol, United Kingdom

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Underpinning much work on the use of Virtual Reality technologies in design prototyping, is the need to reliably track the 3D position of a physical object in real space, then allowing synchronisation with a digital counterpart. With many tracking methods requiring changes to object geometry, this work develops and benchmarks four minimally invasiveness 6 DoF tracking approaches, before discussing their use in a prototyping context. Results show that using AI and point cloud methods, accuracies of 20mm at 20Hz are achievable on low-end hardware with no alterations to the prototype needed.

Type
Design Methods and Tools
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

Abdlkarim, D., Di Luca, M., Aves, P., Maaroufi, M., Yeo, S.-H., Miall, R.C., Holland, P., Galea, J.M., 2023. A methodological framework to assess the accuracy of virtual reality hand-tracking systems: A case study with the Meta Quest 2. Behav. Res. Methods. https://doi.org/10.3758/s13428-022-02051-8CrossRefGoogle Scholar
Batmaz, A.U., Seraji, M.R., Kneifel, J., Stuerzlinger, W., 2021. No Jitter Please: Effects of Rotational and Positional Jitter on 3D Mid-Air Interaction, in: Arai, K., Kapoor, S., Bhatia, R. (Eds.), Proceedings of the Future Technologies Conference (FTC) 2020, Volume 2, Advances in Intelligent Systems and Computing. Springer International Publishing, Cham, pp. 792808. https://doi.org/10.1007/978-3-030-63089-8_52Google Scholar
Boonbrahm, S., Boonbrahm, P., Kaewrat, C., 2020. The Use of Marker-Based Augmented Reality in Space Measurement. Procedia Manuf., International Conference on Industry 4.0 and Smart Manufacturing (ISM 2019) 42, 337343. https://doi.org/10.1016/j.promfg.2020.02.081Google Scholar
Camburn, B., Viswanathan, V., Linsey, J., Anderson, D., Jensen, D., Crawford, R., Otto, K., Wood, K., 2017. Design prototyping methods: state of the art in strategies, techniques, and guidelines. Des. Sci. 3, e13. https://doi.org/10.1017/dsj.2017.10CrossRefGoogle Scholar
Caserman, P., Martinussen, M., Göbel, S., 2019. Effects of End-to-end Latency on User Experience and Performance in Immersive Virtual Reality Applications, in: van der Spek, E., Göbel, S., Do, E.Y.-L., Clua, E., Baalsrud Hauge, J. (Eds.), Entertainment Computing and Serious Games, Lecture Notes in Computer Science. Springer International Publishing, Cham, pp. 5769. https://doi.org/10.1007/978-3-030-34644-7_5CrossRefGoogle Scholar
Castro, P., Kim, T.-K., 2023. PoseMatcher: One-shot 6D Object Pose Estimation by Deep Feature Matching. https://doi.org/10.48550/arXiv.2304.01382CrossRefGoogle Scholar
Chatzitofis, A., Zarpalas, D., Kollias, S., Daras, P., 2019. DeepMoCap: Deep Optical Motion Capture Using Multiple Depth Sensors and Retro-Reflectors. Sensors 19, 282. https://doi.org/10.3390/s19020282CrossRefGoogle ScholarPubMed
Desanghere, L., Marotta, J.J., 2015. The influence of object shape and center of mass on grasp and gaze. Front. Psychol. 6.CrossRefGoogle ScholarPubMed
Fourment, M., Gillings, M.R., 2008. A comparison of common programming languages used in bioinformatics. BMC Bioinformatics 9, 82. https://doi.org/10.1186/1471-2105-9-82CrossRefGoogle ScholarPubMed
de Canaviri, Kuhlmann, Meiszl, L., Hussein, K., Abbassi, V., Mirraziroudsari, P., Hake, S.D., Potthast, L., Ratert, T., Schulten, F., Silberbach, T., Warnecke, M., Wiswede, Y., Schiprowski, D., Heß, W., Brüngel, D., Friedrich, R., C.M., 2023. Static and Dynamic Accuracy and Occlusion Robustness of SteamVR Tracking 2.0 in Multi-Base Station Setups. Sensors 23, 725. https://doi.org/10.3390/s23020725CrossRefGoogle Scholar
Liker, J.K., Pereira, R.M., 2018. Virtual and Physical Prototyping Practices: Finding the Right Fidelity Starts With Understanding the Product. IEEE Eng. Manag. Rev. 46, 7185. https://doi.org/10.1109/EMR.2018.2873792CrossRefGoogle Scholar
Nguyen, V.N., Du, Y., Xiao, Y., Ramamonjisoa, M., Lepetit, V., 2022. PIZZA: A Powerful Image-only Zero-Shot Zero-CAD Approach to 6 DoF Tracking. https://doi.org/10.48550/arXiv.2209.07589CrossRefGoogle Scholar
Sass, L., Oxman, R., 2006. Materializing design: the implications of rapid prototyping in digital design. Des. Stud. 27, 325355. https://doi.org/10.1016/j.destud.2005.11.009CrossRefGoogle Scholar
Tundra Labs [WWW Document], n.d. . Tundra Labs. URL https://tundra-labs.com/en-gb (accessed 8.3.23).Google Scholar
Tuscher, M., Hörz, J., Driess, D., Toussaint, M., 2021. Deep 6-DoF Tracking of Unknown Objects for Reactive Grasping.CrossRefGoogle Scholar
Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P.H.S., 2019. Fast Online Object Tracking and Segmentation: A Unifying Approach. https://doi.org/10.48550/arXiv.1812.05050CrossRefGoogle Scholar
Zhang, Z., 2014. Iterative Closest Point (ICP), in: Ikeuchi, K. (Ed.), Computer Vision: A Reference Guide. Springer US, Boston, MA, pp. 433–434. https://doi.org/10.1007/978-0-387-31439-6_179Google Scholar