Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-24T06:44:53.496Z Has data issue: false hasContentIssue false

PROPOSING A GENERALIZED DESCRIPTION OF VARIATIONS IN DIFFERENT TYPES OF SYSTEMS BY THE MODEL OF PGE – PRODUCT GENERATION ENGINEERING

Published online by Cambridge University Press:  11 June 2020

A. Albers
Affiliation:
Karlsruhe Institute of Technology, Germany
S. Rapp*
Affiliation:
Karlsruhe Institute of Technology, Germany
J. Fahl
Affiliation:
Karlsruhe Institute of Technology, Germany
T. Hirschter
Affiliation:
Karlsruhe Institute of Technology, Germany
S. Revfi
Affiliation:
Karlsruhe Institute of Technology, Germany
M. Schulz
Affiliation:
Karlsruhe Institute of Technology, Germany
T. Stürmlinger
Affiliation:
Karlsruhe Institute of Technology, Germany
M. Spadinger
Affiliation:
Karlsruhe Institute of Technology, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The model of PGE describes the emergence of new systems based on reference by the activities carryover, embodiment and principle variation - qualitatively different manifestations of a transfer process. We investigate indicators which constitute these different manifestations measurably for different types of systems. We propose generalized variation operators to describe system development with respect to different product elements and system types. We use case studies from automotive, production systems and simulation models.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2020. Published by Cambridge University Press

References

Albers, A., Bursac, N. and Rapp, S. (Eds.) (2016a), “PGE - Product generation engineering Case study of the dual mass flywheel: DS 84”, Proceedings of the DESIGN 2016 14th International Design Conference Engineering Design Practice, Cavtat-Dubrovnik, Croatia, 16-19 May 2016. Ed.: D. Marjanović, Vol. 84, The Design Society, Glasgow.Google Scholar
Albers, A., Bursac, N. and Wintergerst, E. (2015), “Produktgenerationsentwicklung - Bedeutung und Herausforderungen aus einer entwicklungsmethodischen Perspektive”, Stuttgarter Symposium für Produktentwicklung (SSP) Stuttgart, 19. Juni 2015; Hrsg.: H. Binz, Fraunhofer Verl., Stuttgart.Google Scholar
Albers, A., Ebel, B. and Lohmeyer, Q. (2012), “Systems of objectives in complex product development”, in Horváth, I. (Ed.), Tools and methods of competitive engineering: Proceedings of the Ninth International Symposium on Tools and Methods of Competitive Engineering, TMCE 2012, May 7-11, 2012, Karlsruhe, Germany; digital proceedings, Faculty of Industrial Design Engineering Delft University of Technology, Delft, pp. 267278.Google Scholar
Albers, A. et al. . (2017), “Kopplung von CAE-Methoden zur Untersttzung des Produktentwicklers”, VDI-Konstruktion, Vol. 9, pp. 7682.CrossRefGoogle Scholar
Albers, A. et al. (2020), Model of PGE - Product Generation Engineering by the Example of Autonomous Driving. CIRP Design 2020, Elsevier B.V, Amsterdam, Netherlands, [Submitted Publication].Google Scholar
Albers, A. et al. (2018), Supporting Potential Innovation in the Early Phase of PGE – Product Generation Engineering: Structuring the Development of the Initial System of Objectives: R&D Management Conference, Milano, I, June 30-July 4, 2018.Google Scholar
Albers, A. et al. (2017a), Die Frühe Phase der PGE - Produktgenerationsentwicklung: Stuttgarter Symposium für Produktentwicklung (SSP) Stuttgart, 2017; Eds.: H. Binz, Fraunhofer Verl, Stuttgart.Google Scholar
Albers, A. et al. (2019a), “The Reference System in the Model of PGE: Proposing a Generalized Description of Reference Products and their Interrelations”, Proceedings of the Design Society: International Conference on Engineering Design, Vol. 1 No. 1, pp. 16931702. https://doi.org/10.1017/dsi.2019.175Google Scholar
Albers, A. et al. (2019b), “Identification of potentials in the context of Design for Industry 4.0 and modelling of interdependencies between product and production processes”, Procedia CIRP, Vol. 84, pp. 100105. https://doi.org/10.1016/j.procir.2019.04.298CrossRefGoogle Scholar
Alexander, C. (1964), Notes on the synthesis of form, Harvard Univ. Press, Mass, Cambridge.Google Scholar
Anderl, R. et al. (2012), Smart Engineering: Interdisziplinäre Produktentstehung, acatech DISKUSSION, April 2012, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29372-6CrossRefGoogle Scholar
Arslan, M. et al. (2018), “Developing R&D-Strategies for Future Innovations: Activities in the Context of Technological Transformation and PGE – Product Generation Engineering”, R&D Management Conference, Milano.Google Scholar
Eversheim, W. (1989), Organisation in der Produktionstechnik Band 4: Fertigung und Montage, VDI-Buch, 2nd ed, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61344-9CrossRefGoogle Scholar
Gausemeier, J. et al. (2009), Management of cross-domain model consistency during the development of advanced mechatronic systems.Google Scholar
Henderson, R.M. and Clark, K.B. (1990), “Architectural innovation: The reconfiguration of existing”, Administrative science quarterly, Vol. 35 No. 1, pp. 930.CrossRefGoogle Scholar
International Council on Systems Engineering (INCOSE) (2007), Systems Engineering Vision 2020: INCOSE-TP-2004-004-02, 2.03th ed.Google Scholar
Jarratt, T.A.W. et al. (2011), “Engineering change: an overview and perspective on the literature”, Research in Engineering Design, Vol. 22 No. 2, pp. 103124. https://doi.org/10.1007/s00163-010-0097-yCrossRefGoogle Scholar
Kleiner, S. and Kramer, C. (2013), “Model Based Design with Systems Engineering Based on RFLP Using V6”, In: Stark, R. and Abramovici, M. (Eds.), Smart product engineering: Proceedings of the 23rd CIRP Design Conference, Bochum, Germany, March 11th-13th, 2013, Lecture Notes in Production Engineering, Springer Berlin Heidelberg, Berlin, pp. 93102. https://doi.org/10.1007/978-3-642-30817-8_10.CrossRefGoogle Scholar
Langer, S. et al. (2012), Änderungsmanagement-Report 2012: Studienergebnisse zu Ursachen und Auswirkungen, aktuellen Praktiken, Herausforderungen und Strategien in Deutschland: Änderungsmanagement-Report 2012: Studienergebnisse zu Ursachen und Auswirkungen, aktuellen Praktiken, Herausforderungen und Strategien in Deutschland.Google Scholar
Lindemann, U. (2016), Handbuch Produktentwicklung, Hanser, München. https://doi.org/10.3139/9783446445819CrossRefGoogle Scholar
Marples, D.L. (1961), “The Decisions of Engineering Design”, IRE Transactions on Engineering Management, Vol. 8 No. 2, pp. 5571. https://doi.org/10.1109/IRET-EM.1961.5007593CrossRefGoogle Scholar
Pahl, G. et al. (2007), Konstruktionslehre: Grundlagen erfolgreicher Produktentwicklung ; Methoden und Anwendung, Springer-Lehrbuch, 7, Aufl., Springer, Berlin.Google Scholar
Ponn, J. and Lindemann, U. (2011), Konzeptentwicklung und Gestaltung technischer Produkte: Systematisch von Anforderungen zu Konzepten und Gestaltlösungen, VDI-Buch, Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20580-4CrossRefGoogle Scholar
Ropohl, G. (1975), Systemtechnik: Grundlagen und Anwendung ; mit 5 Tabellen, Hanser, München.Google Scholar
Verein Deutscher Ingenieure, Association of Engineers (2004), VDI-Richtlinie 2206: Design methodology for mechatronic systems, 03.100.40, 31.220.01, 39.020, Beuth Verlag GmbH, Berlin.Google Scholar