Skip to main content Accessibility help
×
Home

Influence of acetylation on peptide breakdown by microorganisms from the sheep rumen

  • R.J. Wallace (a1)

Extract

Protein is broken down by rumen microorganisms via peptides and amino acids to produce ammonia at rates which frequently exceed microbial requirements for N. Much of the ammonia-N formed in this way is eventually excreted as urea. If any of the steps in the degradation sequence could be inhibited, excessive ammonia production would be reduced. More protein, peptides or amino acids would escape fermentation in the rumen, thereby improving the protein nutrition of the host animal.

The breakdown of peptides to amino acids is a central part of the degradation sequence. The main enzymic mechanism by which peptides are hydrolysed in the rumen is a bacterial dipeptidyl aminopeptidase, which cleaves dipeptides from the N-terminus of the peptide chain (Wallace & McKain, 1990). Little carboxypeptidase activity appears to be present. The present experiments were undertaken to find out to what extent blocking the N-terminus of peptides enables them to survive degradation in rumen fluid, and to determine which peptides can be protected in this way.

Copyright

References

Hide All
Wallace, R.J. & McKain, N. (1989). Analysis of peptide metabolism by ruminal microorganisms. Appl. Environ. Microbiol. 55, 23722376.

Influence of acetylation on peptide breakdown by microorganisms from the sheep rumen

  • R.J. Wallace (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed