Skip to main content Accessibility help
×
Home

A STOCHASTIC APPROXIMATION ALGORITHM FOR STOCHASTIC SEMIDEFINITE PROGRAMMING

  • Bruno Gaujal (a1) and Panayotis Mertikopoulos (a2)

Abstract

Motivated by applications to multi-antenna wireless networks, we propose a distributed and asynchronous algorithm for stochastic semidefinite programming. This algorithm is a stochastic approximation of a continuous-time matrix exponential scheme which is further regularized by the addition of an entropy-like term to the problem's objective function. We show that the resulting algorithm converges almost surely to an ɛ-approximation of the optimal solution requiring only an unbiased estimate of the gradient of the problem's stochastic objective. When applied to throughput maximization in wireless systems, the proposed algorithm retains its convergence properties under a wide array of mobility impediments such as user update asynchronicities, random delays and/or ergodically changing channels. Our theoretical analysis is complemented by extensive numerical simulations, which illustrate the robustness and scalability of the proposed method in realistic network conditions.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A STOCHASTIC APPROXIMATION ALGORITHM FOR STOCHASTIC SEMIDEFINITE PROGRAMMING
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A STOCHASTIC APPROXIMATION ALGORITHM FOR STOCHASTIC SEMIDEFINITE PROGRAMMING
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A STOCHASTIC APPROXIMATION ALGORITHM FOR STOCHASTIC SEMIDEFINITE PROGRAMMING
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Hide All
1.Base station (BS) radio transmission and reception. Technical Specification 36.104 V12.4.0, 3GPP, June 2014.
2.User equipment (UE) radio transmission and reception. Technical Specification 36.101 V12.4.0, 3GPP, June 2014.
3.3GPP, User equipment (UE) radio transmission and reception. White paper, June 2014.
4.Anderson, T.W. (2003). An introduction to multivariate statistical analysis. Hoboken, NJ, USA: Wiley–Interscience, 3rd ed.
5.Belmega, E.V., Lasaulce, S., & Debbah, M. (2009). Power allocation games for MIMO multiple access channels with coordination. IEEE Transactions on Wireless Communications 8: 31823192.
6.Belmega, E.V., Lasaulce, S., Debbah, M., & Hjørungnes, A. (2010). Learning distributed power allocation policies in MIMO channels. In EUSIPCO ’10: Proceedings of the 2010 European Signal Processing Conference, Aalborg, Denmark.
7.Benaïm, M. (1999). Dynamics of stochastic approximation algorithms. In Séminaire de Probabilités XXXIII, Azéma, J., Émery, M., Ledoux, M., & Yor, M. (eds.), vol. 1709 of Lecture Notes in Mathematics, Berlin, Heidelberg: Springer, pp. 168.
8.Borkar, V.S. (2008). Stochastic approximation: a dynamical systems viewpoint. Cambridge, UK: Cambridge University Press and Hindustan Book Agency.
9.Boyd, S.P. & Vandenberghe, L. (2004). Convex optimization. Cambridge, UK: Cambridge University Press.
10.Calcev, G., Chizhik, D., Göransson, B., Howard, S., Huang, H., Kogiantis, A., Molisch, A.F., Moustakas, A.L., Reed, D., & Xu, H. (2007). A wideband spatial channel model for system-wide simulations. IEEE Transactions on Vehicular Technology 56: 389.
11.Cheng, R.S. & Verdú, S. (1993). Gaussian multiaccess channels with ISI: capacity region and multiuser water-filling. IEEE Transactions on Information Theory 39: 773785.
12.Coucheney, P., Gaujal, B., & Mertikopoulos, P. (2014). Distributed optimization in multi-user MIMO systems with imperfect and delayed information. In ISIT ’14: Proceedings of the 2014 IEEE International Symposium on Information Theory, Honolulu, HI, USA.
13.Dattorro, J. (2005). Convex optimization & Euclidean distance geometry. Palo Alto, CA, USA: Meboo Publishing.
14.Debreu, G. (1952). A social equilibrium existence theorem. Proceedings of the National Academy of Sciences of the United States of America 38: 886893.
15.Goldsmith, A.J. & Varaiya, P.P. (1997). Capacity of fading channels with channel side information. IEEE Transactions on Information Theory 43: 19861992.
16.Higham, N.J. (2008). Functions of matrices: theory and computation. Philadelphia, PA: SIAM.
17.Kakade, S.M., Shalev-Shwartz, S., & Tewari, A. (2012). Regularization techniques for learning with matrices. Journal of Machine Learning Research 13: 18651890.
18.Mertikopoulos, P. & Belmega, E.V. (2014). Transmit without regrets: online optimization in MIMO–OFDM cognitive radio systems. IEEE Journal on Selected Areas in Communications 32: 19871999.
19.Mertikopoulos, P., Belmega, E.V., & Moustakas, A.L. (2012). Matrix exponential learning: Distributed optimization in MIMO systems. In ISIT ’12: Proceedings of the 2012 IEEE International Symposium on Information Theory, Cambridge, MA, USA, pp. 30283032.
20.Mertikopoulos, P., Belmega, E.V., Moustakas, A.L., & Lasaulce, S. (2012). Distributed learning policies for power allocation in multiple access channels. IEEE Journal on Selected Areas in Communications 30: 96106.
21.Mertikopoulos, P. & Moustakas, A.L. (2016) Learning in an uncertain world: MIMO covariance matrix optimization with imperfect feedback. IEEE Transactions on Signal Processing 64: 518.
22.Moler, C. & van Loan, C. (2003). Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Reviews 45: 349.
23.Monderer, D. & Shapley, L.S. (1996). Potential games. Games and Economic Behavior 14: 124143.
24.Nash, J.F. (1951). Non-cooperative games. Annals of Mathematics 54: 286295.
25.Nemirovski, A.S., Juditsky, A., Lan, G.G., & Shapiro, A. (2009). Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization 19: 15741609.
26.Nemirovski, A.S. & Yudin, D.B. (1983). Problem complexity and method efficiency in optimization. New York, NY: Wiley.
27.Nesterov, Y. (2009). Primal-dual subgradient methods for convex problems. Mathematical Programming 120: 221259.
28.Palomar, D.P., Cioffi, J.M., & Lagunas, M. (2003). Uniform power allocation in MIMO channels: a game-theoretic approach. IEEE Transactions on Information Theory 49: 1707.
29.Ramana, M. & Goldman, A.J. (1995). Some geometric results in semidefinite programming. Journal of Global Optimization 7: 3350.
30.Rosen, J.B. (1965). Existence and uniqueness of equilibrium points for concave N-person games. Econometrica 33: 520534.
31.Scutari, G., Palomar, D.P., & Barbarossa, S. (2006). Simultaneous iterative water-filling for Gaussian frequency-selective interference channels. In ISIT ’06: Proceedings of the 2006 International Symposium on Information Theory, Seattle, WA, USA, pp. 600604.
32.Scutari, G., Palomar, D.P., & Barbarossa, S. (2008). Competitive design of multiuser MIMO systems based on game theory: a unified view. IEEE Journal on Selected Areas in Communications 26: 10891103.
33.Scutari, G., Palomar, D.P., & Barbarossa, S. (2008). Optimal linear precoding strategies for wideband non-cooperative systems based on game theory–part I: Nash equilibria. IEEE Transactions on Signal Processing 56: 12301249.
34.Scutari, G., Palomar, D.P., & Barbarossa, S. (2008). Optimal linear precoding strategies for wideband non-cooperative systems based on game theory–part II: algorithms. IEEE Transactions on Signal Processing 56: 12501267.
35.Scutari, G., Palomar, D.P., & Barbarossa, S. (2009). The MIMO iterative waterfilling algorithm. IEEE Transactions on Signal Processing 57: 19171935.
36.Starr, T., Cioffi, J.M., & Silverman, P.J. (1999). Understanding digital subscriber line technology. Englewood Cliffs, NJ: Prentice-Hall.
37.Strassen, V. (1965). The existence of probability measures with given marginals. The Annals of Mathematical Statistics 38: 423439.
38.Sun, P. & Freund, R.M. (2004). Computation of minimum-cost covering ellipsoids. Operations Research 52: 690706.
39.Telatar, I.E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications and Related Technologies 10: 585596.
40.Wilcox, R.M. (1967). Exponential operators and parameter differentiation in quantum physics. Journal of Mathematical Physics 8: 962982.
41.Yang, Y., Scutari, G., Palomar, D.P., & Pesavento, M. (2014). A parallel stochastic approximation method for nonconvex multi-agent optimization problems. http://arxiv.org/abs/1410.5076.
42.Yu, W., Rhee, W., Boyd, S., & Cioffi, J.M. (2004). Iterative water-filling for Gaussian vector multiple-access channels. IEEE Transactions on Information Theory 50: 145152.
43.Zhu, Y. & Ariyawanasa, K.A. (2011). A preliminary set of applications leading to stochastic semidefinite programs and chance-constrained semidefinite programs. Applied Mathematical Modelling 35: 24252442.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed