Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-16T16:04:44.036Z Has data issue: false hasContentIssue false

A Queueing Network Model for a Communication System with Channel Allocation

Published online by Cambridge University Press:  27 July 2009

A. Brandt
Affiliation:
Fachbereich Mathematik, Humboldt-Universität, zu Berlin PSF 1297, Germany
H. Sulanke
Affiliation:
Fachbereich Mathematik, Humboldt-Universität, zu Berlin PSF 1297, Germany

Abstract

A communication system of n stations is studied. Poisson arrival streams of messages enter the stations and require transmission to a destination station. Each station is equipped with k channels and has a waiting room for messages. For transmission of a message, one channel is needed both at the arrival and at the destination station. The transmission time is exponentially distributed. Messages are lost (possibly after a waiting time) if, at the destination station, all channels are busy. The queueing network model is of the nonproduct type. Sufficient conditions for the existence of an equilibrium distribution are given. For determining the losses at the n stations, a heuristical approximation that requires us to solve a system of nonlinear equations is developed. For this, an efficient iterative numerical algorithm is given. Simulation studies show that the approximation is accurate enough for larger n.

Type
Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baskett, F., Chandy, K.M., Muntz, R.R. & Palacios, F. (1975). Open, closed, and mixed networks of queues with different classes of customers. Journal of the Association of Computing Machinery 22: 248260.CrossRefGoogle Scholar
Borovkov, A.A. (1984). Asymptotic methods in queueing theory. Chichester: Wiley.Google Scholar
Brandt, A., Franken, P. & Lisek, B. (1990). Stationary stochastic models. Berlin: Akademic-Verlag.Google Scholar
Brandt, A. & Sulanke, H. (1989). A queueing network model for a communication system with channel allocation. Preprint Nr. 218, Sektion Mathematik, Humboldt-Universität zu Berlin.Google Scholar
Brandt, A. & Sulanke, H. (1989). On the stability of a queueing network model for a communication system with channel allocation. Unpublished manuscript.Google Scholar
Chandy, K.M., Herzog, U. & Woo, L. (1975). Approximate analysis of general queueing network. IBM Journal of Research & Development 19: 4349.CrossRefGoogle Scholar
Cohen, J.W. (1969). The single server queue. Amsterdam, London: North-Holland.Google Scholar
Faddejew, D.K. & Faddejewa, W.N. (1973). Numerische Methoden der linearen Algebra. Berlin: VEB Deutscher Verlag der Wissenschaften.Google Scholar
Kelly, F.F. (1979). Reversibility and stochastic networks. Chichester: Wiley.Google Scholar
Lavenberg, S.S. (1988). A perspective on queueing models of computer performance. In Boxma, O.J. & Syski, R. (Eds.), Queueing theory and its applications. Amsterdam: North-Holland.Google Scholar
Pastuskas, F. (1988). Analytical and Numerical Investigations of a Communication Network with Three Stations and One Channel per Station (in German). Diploma paper, Sektion Mathematik, Humboldt-Universität zu Berlin.Google Scholar
Schwetlick, H. (1979). Numerische Lösung nichtlinearer Gleichungen. Berlin: VEB Verlag der Wissenschaften.Google Scholar
Wolff, R.W. (1982). Poisson arrivals see time averages. Operations Research 30: 223231.CrossRefGoogle Scholar
Zeidler, E. (1976). Vorlesungen über nichtlineare Funktionalanalysis I. Leipzig: Teubner-Texte zur Mathematik.Google Scholar