Skip to main content Accessibility help
×
×
Home

FINDING EXPECTED REVENUES IN G-NETWORK WITH SIGNALS AND CUSTOMERS BATCH REMOVAL

  • Mikhail Matalytski (a1) and Dmitry Kopats (a1)
Abstract

The paper provides an analysis of G-network with positive customers and signals when signals arriving to the system move customer to another system or destroy in it a group of customers, reducing their number to a random value that is given by a probability distribution. The signal arriving to the system, in which there are no positive customers, does not exert any influence on the queueing network and immediately disappears from it. Streams of positive customers and signals arriving to each of the network systems are independent. Customer in the transition from one system to another brings the latest some revenue, and the revenue of the first system is reduced by this amount. A method of finding the expected revenues of the systems of such a network has been proposed. The case when the revenues from transitions between network states are deterministic functions depending on its states has been considered. A description of the network is given, all possible transitions between network states, transition probabilities, and revenues from state transitions are indicated. A system of difference-differential equations for the expected revenues of network systems has been obtained. To solve it, we propose a method of successive approximations, combined with the method of series. It is proved that successive approximations converge to the stationary solution of such a system of equations, and the sequence of approximations converges to a unique solution of the system. Each approximation can be represented as a convergent power series with an infinite radius of convergence, the coefficients of which are related by recurrence relations. Therefore, it is convenient to use them for calculations on a PC. The obtained results can be applied in forecasting losses in information and telecommunication systems and networks from the penetration of computer viruses into it and conducting computer attacks.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      FINDING EXPECTED REVENUES IN G-NETWORK WITH SIGNALS AND CUSTOMERS BATCH REMOVAL
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      FINDING EXPECTED REVENUES IN G-NETWORK WITH SIGNALS AND CUSTOMERS BATCH REMOVAL
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      FINDING EXPECTED REVENUES IN G-NETWORK WITH SIGNALS AND CUSTOMERS BATCH REMOVAL
      Available formats
      ×
Copyright
References
Hide All
1.Stidham, S. & Weber, R. (1993). A survey of Markov decision models for control of networks of queues. Queueing Systems 13(1–3): 291314.
2.Matalytski, M. (2009). On some results in analysis and optimization in the Markov networks with incomes and their application. Automation and Remote Control 70(2): 16891697.
3.Matalytski, M. (2015). Analysis and forecasting of expected incomes in Markov networks with bounded waiting time for the claims. Automation and Remote Control 76(6): 10051017.
4.Matalytski, M. (2015). Analysis and forecasting of expected incomes in Markov networks with unreliable servicing systems. Automation and Remote Control 76(3): 21792189.
5.Matalytski, M. (2017). Forecasting anticipated income in the Markov networks with positive and negative customers. Automation and Remote Control 78(5): 815825.
6.Gelenbe, E., Gellman, M., Lent, R., Liu, P., & Su, P. (2004). Autonomous smart routing for network QoS. 1st International Conference on Autonomic Computing, Proceedings. International Conference, pp. 232239.
7.Gelenbe, E. & Iasnogorodsky, R. (1980). A queue with server of walking type. Annales de l'Institut Henri Poincaré, Section B: Calcul de Probabilités et Statistiques. 16(1): 6373.
8.Gelenbe, E. & Fourneau, J.-M. (2002). G-Networks with resets. Performance Evaluation 49(1–4): 179191.
9.Gelenbe, E. (1991). Product form Queueing networks with negative and positive customers. Journal of Applied Probability 28: 656663.
10.Gelenbe, E. (1993). G-networks with triggered customer movement. Journal of Applied Probability 30: 742748.
11.Gelenbe, E. (1993). G-networks with signals and batch removal. Probability in the Engineering and Informational Sciences 7: 335342.
12.Matalytski, M. & Naumenko, V. (2016). Stochastic networks with nonstandard moving customers. Monograph. Grodno: GrSU, 348 p.
13.Matalytski, M. (2008). Investigation Markov HM-networks with multiple class customers. News of NAS RB, Series Physics and Mathematics Science 4(4): 113119.
14.Kosareva, E.V., Matalytski, M.A., & Rozov, K.V. (2012). About finding incomes in HM-networks with limited waiting time applications by successive approximations, combined with the method of series. VesnikHrodzenskahaDziarzhaunahaUniversitetaImiaIankiKupaly. Seryia 2. 3, 125130.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Probability in the Engineering and Informational Sciences
  • ISSN: 0269-9648
  • EISSN: 1469-8951
  • URL: /core/journals/probability-in-the-engineering-and-informational-sciences
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed