Skip to main content Accessibility help
×
Home

Weekly Checks Improve Real-Time Prehospital ECG Transmission in Suspected STEMI

  • Nicole T. D’Arcy (a1) (a2), Nichole Bosson (a1) (a3), Amy H. Kaji (a1), Quang T. Bui (a1), William J. French (a1), Joseph L. Thomas (a1), Yvonne Elizarraraz (a1), Natalia Gonzalez (a1), Jose Garcia (a1) and James T. Niemann (a1)...

Abstract

Introduction

Field identification of ST-elevation myocardial infarction (STEMI) and advanced hospital notification decreases first-medical-contact-to-balloon (FMC2B) time. A recent study in this system found that electrocardiogram (ECG) transmission following a STEMI alert was frequently unsuccessful.

Hypothesis

Instituting weekly test ECG transmissions from paramedic units to the hospital would increase successful transmission of ECGs and decrease FMC2B and door-to-balloon (D2B) times.

Methods

This was a natural experiment of consecutive patients with field-identified STEMI transported to a single percutaneous coronary intervention (PCI)-capable hospital in a regional STEMI system before and after implementation of scheduled test ECG transmissions. In November 2014, paramedic units began weekly test transmissions. The mobile intensive care nurse (MICN) confirmed the transmission, or if not received, contacted the paramedic unit and the department’s nurse educator to identify and resolve the problem. Per system-wide protocol, paramedics transmit all ECGs with interpretation of STEMI. Receiving hospitals submit patient data to a single registry as part of ongoing system quality improvement. The frequency of successful ECG transmission and time to intervention (FMC2B and D2B times) in the 18 months following implementation was compared to the 10 months prior. Post-implementation, the time the ECG transmission was received was also collected to determine the transmission gap time (time from ECG acquisition to ECG transmission received) and the advanced notification time (time from ECG transmission received to patient arrival).

Results

There were 388 patients with field ECG interpretations of STEMI, 131 pre-intervention and 257 post-intervention. The frequency of successful transmission post-intervention was 73% compared to 64% prior; risk difference (RD)=9%; 95% CI, 1-18%. In the post-intervention period, the median FMC2B time was 79 minutes (inter-quartile range [IQR]=68-102) versus 86 minutes (IQR=71-108) pre-intervention (P=.3) and the median D2B time was 59 minutes (IQR=44-74) versus 60 minutes (IQR=53-88) pre-intervention (P=.2). The median transmission gap was three minutes (IQR=1-8) and median advanced notification time was 16 minutes (IQR=10-25).

Conclusion

Implementation of weekly test ECG transmissions was associated with improvement in successful real-time transmissions from field to hospital, which provided a median advanced notification time of 16 minutes, but no decrease in FMC2B or D2B times.

D’ArcyNT, BossonN, KajiAH, BuiQT, FrenchWJ, ThomasJL, ElizarrarazY, GonzalezN, GarciaJ, NiemannJT. Weekly Checks Improve Real-Time Prehospital ECG Transmission in Suspected STEMI. Prehosp Disaster Med. 2018;33(3):245249.

Copyright

Corresponding author

Correspondence: Nicole T. D’Arcy, MD UCSF-SFGH EMS & Disaster Medicine Fellow UCSF Department of Emergency Medicine 1001 Potrero Avenue, Room 1E22A San Francisco, California 94110 USA E-mail: nicoloid@gmail.com

Footnotes

Hide All

Conflicts of interest: The authors have no conflicts of interest to report. The authors alone are responsible for the content and writing of the paper.

Footnotes

References

Hide All
1. Mozaffarian, D, Benjamin, EJ, Go, AS, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29-e322.
2. Global Burden of Disease Study Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(9995):743-800.
3. Bradley, EH, Nallamothu, BK, Herrin, J, et al. National efforts to improve door-to-balloon time results from the Door-to-Balloon Alliance. J Am Coll Cardiol. 2009;54(25):2423-2429.
4. Krumholz, HM, Bradley, EH, Nallamothu, BK, et al. A campaign to improve the timeliness of primary percutaneous coronary intervention: Door-to-Balloon: An Alliance for Quality. JACC Cardiovasc Interv. 2008;1(1):97-104.
5. Bates, ER, Jacobs, AK. Time to treatment in patients with STEMI. NEJM. 2013;369(10):889-892.
6. Menees, DS, Peterson, ED, Wang, Y, et al. Door-to-balloon time and mortality among patients undergoing primary PCI. NEJM. 2013;369(10):901-909.
7. Nallamothu, BK, Normand, SL, Wang, Y, et al. Relation between door-to-balloon times and mortality after primary percutaneous coronary intervention over time: a retrospective study. Lancet. 2015;385(9973):1114-1122.
8. Nam, J, Caners, K, Bowen, JM, Welsford, M, O’Reilly, D. Systematic review and meta-analysis of the benefits of out-of-hospital 12-lead ECG and advance notification in ST-segment elevation myocardial infarction patients. Ann Emerg Med. 2014;64(2):176-186.
9. Adams, G, Abusaid, G, Lee, B, et al. From theory to practice: implementation of prehospital electrocardiogram transmission in ST-elevation myocardial infarction - a multicenter experience. J Invasive Cardiol. 2010;22(11):520-525.
10. Bosson, N, Kaji, AH, Niemann, JT, et al. The utility of prehospital ECG transmission in a large EMS system. Prehosp Emerg Care. 2015;19(4):496-503.
11. Eckstein, M, Koenig, W, Kaji, A, Tadeo, R. Implementation of specialty centers for patients with ST-segment elevation myocardial infarction. Prehosp Emerg Care. 2009;13(2):215-222.
12. Afolabi, BA, Novaro, GM, Pinski, SL, Fromkin, KR, Bush, HS. Use of the prehospital ECG improves door-to-balloon times in ST segment elevation myocardial infarction irrespective of time of day or day of week. Emerg Med J. 2007;24(8):588-591.
13. Kawakami, S, Tahara, Y, Noguchi, T, et al. Time to reperfusion in ST-segment elevation myocardial infarction patients with vs. without prehospital mobile telemedicine 12-lead electrocardiogram transmission. Circ J. 2016;80(7):1624-1633.
14. Brown, JP, Mahmud, E, Dunford, JV, Ben-Yehuda, O. Effect of prehospital 12-lead electrocardiogram on activation of the cardiac catheterization laboratory and door-to-balloon time in ST-segment elevation acute myocardial infarction. Am J Cardiol. 2008;101(2):158-161.
15. Cheskes, S, Turner, L, Foggett, R, et al. Paramedic contact to balloon in less than 90 minutes: a successful strategy for ST-segment elevation myocardial infarction bypass to primary percutaneous coronary intervention in a Canadian emergency medical system. Prehosp Emerg Care. 2011;15(4):490-498.
16. Dhruva, VN, Abdelhadi, SI, Anis, A, et al. ST-segment analysis using wireless technology in acute myocardial infarction (STAT-MI) trial. J Am Coll Cardiol. 2007;50(6):509-513.
17. Diercks, DB, Kontos, MC, Chen, AY, et al. Utilization and impact of prehospital electrocardiograms for patients with acute ST-segment elevation myocardial infarction: data from the NCDR (National Cardiovascular Data Registry) ACTION (Acute Coronary Treatment and Intervention Outcomes Network) Registry. J Am Coll Cardiol. 2009;53(2):161-166.
18. Kerem, Y, Eastvold, JS, Faragoi, D, Strasburger, D, Motzny, SE, Kulstad, EB. The role of prehospital electrocardiograms in the recognition of ST-segment elevation myocardial infarctions and reperfusion times. J Emerg Med. 2014;46(2):202-207.
19. Squire, BT, Tamayo-Sarver, JH, Rashi, P, Koenig, W, Niemann, JT. Effect of prehospital cardiac catheterization lab activation on door-to-balloon time, mortality, and false-positive activation. Prehosp Emerg Care. 2014;18(1):1-8.
20. Zanini, R, Aroldi, M, Bonatti, S, et al. Impact of prehospital diagnosis in the management of ST elevation myocardial infarction in the era of primary percutaneous coronary intervention: reduction of treatment delay and mortality. J Cardiovasc Med. 2008;9(6):570-575.
21. Sanchez-Ross, M, Oghlakian, G, Maher, J, et al. The STAT-MI (ST-segment analysis using wireless technology in acute myocardial infarction) trial improves outcomes. JACC Cardiovasc Interv. 2011;4(2):222-227.
22. Sorensen, JT, Terkelsen, CJ, Norgaard, BL, et al. Urban and rural implementation of prehospital diagnosis and direct referral for primary percutaneous coronary intervention in patients with acute ST-elevation myocardial infarction. Eur Heart J. 2011;32(4):430-436.
23. Ting, HH, Krumholz, HM, Bradley, EH, et al. Implementation and integration of prehospital ECGs into systems of care for acute coronary syndrome: a scientific statement from the American Heart Association Interdisciplinary Council on Quality of Care and Outcomes Research, Emergency Cardiovascular Care Committee, Council on Cardiovascular Nursing, and Council on Clinical Cardiology. Circulation. 2008;118(10):1066-1079.
24. Kruth, P, Zeymer, U, Gitt, A, et al. Influence of presentation at the weekend on treatment and outcome in ST-elevation myocardial infarction in hospitals with catheterization laboratories. Clin Res Cardiol. 2008;97(10):742-747.
25. First Responder Network Authority. https://firstnet.gov/. Accessed April 21, 2017.
26. Fakhri, Y, Sejersten, M, Schoos, MM, et al. Algorithm for the automatic computation of the modified Anderson-Wilkins acuteness score of ischemia from the prehospital ECG in ST-segment elevation myocardial infarction. J Electrocardiol. 2017;50(1):97-101.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed