Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-02T20:13:01.254Z Has data issue: false hasContentIssue false

Early Vital Sign Thresholds Associated with 24-Hour Mortality among Trauma Patients: A Trauma Quality Improvement Program (TQIP) Study

Published online by Cambridge University Press:  02 April 2024

Michael D. April*
Affiliation:
Uniformed Services University of the Health Sciences, Bethesda, Maryland USA 14th Field Hospital, Fort Stewart, Georgia USA
Andrew D. Fisher
Affiliation:
Department of Surgery, University of New Mexico School of Medicine, Albuquerque, New Mexico USA
Julie A. Rizzo
Affiliation:
Uniformed Services University of the Health Sciences, Bethesda, Maryland USA Brooke Army Medical Center, JBSA Fort Sam Houston, Texas USA
Franklin L. Wright
Affiliation:
University of Colorado School of Medicine, Department of Surgery, Aurora, Colorado USA
Julie M. Winkle
Affiliation:
University of Colorado School of Medicine, Departments of Anesthesia and Emergency Medicine, Aurora, Colorado USA
Steven G. Schauer
Affiliation:
Uniformed Services University of the Health Sciences, Bethesda, Maryland USA University of Colorado School of Medicine, Departments of Anesthesia and Emergency Medicine, Aurora, Colorado USA University of Colorado School of Medicine Center for Combat and Battlefield (COMBAT) Research, Aurora, Colorado USA
*
Correspondence: Dr. Michael D. April Building 816A 2233 Gulick Ave Fort Stewart, Georgia 31314 USA E-mail: Michael.d.april@post.harvard.edu

Abstract

Background:

Identifying patients at imminent risk of death is critical in the management of trauma patients. This study measures the vital sign thresholds associated with death among trauma patients.

Methods:

This study included data from patients ≥15 years of age in the American College of Surgeons Trauma Quality Improvement Program (TQIP) database. Patients with vital signs of zero were excluded. Documented prehospital and emergency department (ED) vital signs included systolic pressure, heart rate, respiratory rate, and calculated shock index (SI). The area under the receiver operator curves (AUROC) was used to assess the accuracy of these variables for predicting 24-hour survival. Optimal thresholds to predict mortality were identified using Youden’s Index, 90% specificity, and 90% sensitivity. Additional analyses examined patients 70+ years of age.

Results:

There were 1,439,221 subjects in the 2019-2020 datasets that met inclusion for this analysis with <0.1% (10,270) who died within 24 hours. The optimal threshold for prehospital systolic pressure was 110, pulse rate was 110, SI was 0.9, and respiratory rate was 15. The optimal threshold for the ED systolic was 112, pulse rate was 107, SI was 0.9, and respiratory rate was 21. Among the elderly sub-analysis, the optimal threshold for prehospital systolic was 116, pulse rate was 100, SI was 0.8, and respiratory rate was 21. The optimal threshold for ED systolic was 121, pulse rate was 95, SI was 0.8, and respiratory rate was 21.

Conclusions:

Systolic blood pressure (SBP) and SI offered the best predictor of mortality among trauma patients. The SBP values predictive of mortality were significantly higher than the traditional 90mmHg threshold. This dataset highlights the need for better methods to guide resuscitation as initial vital signs have limited accuracy in predicting subsequent mortality.

Type
Original Research
Creative Commons
This is a work of the US Government and is not subject to copyright protection within the United States. Published by Cambridge University Press on behalf of World Association for Disaster and Emergency Medicine.
Copyright
© US Department of Defense, 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Britt, LD, Weireter, LJ Jr, Riblet, JL, Asensio, JA, Maull, K. Priorities in the management of profound shock. Surg Clin North Am. 1996;76(4):645660.CrossRefGoogle ScholarPubMed
Eastridge, BJ, Mabry, RL, Seguin, P, et al. Death on the battlefield (2001-2011): implications for the future of combat casualty care. J Trauma Acute Care Surg. 2012;73(6 Suppl 5):S431437.CrossRefGoogle ScholarPubMed
Schauer, SG, April, MD, Simon, E, Maddry, JK, Carter, R, Delorenzo, RA. Prehospital interventions during mass-casualty events in Afghanistan: a case analysis. Prehosp Disaster Med. 2017;32(4):465468.CrossRefGoogle ScholarPubMed
Inci, I, Ozçelik, C, Taçyildiz, I, Nizam, O, Eren, N, Ozgen, G. Penetrating chest injuries: unusually high incidence of high-velocity gunshot wounds in civilian practice. World J Surg. 1998;22(5):438442.CrossRefGoogle ScholarPubMed
Schauer, SG, April, MD, Naylor, JF, et al. A descriptive analysis of data from the Department of Defense Joint Trauma System Prehospital Trauma Registry. US Army Med Dep J. 2017;(3-17):92-97.Google Scholar
CRASH-3 trial collaborators. Effects of tranexamic acid on death, disability, vascular occlusive events, and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomized, placebo-controlled trial. Lancet. 2019;394(10210):17131723.CrossRefGoogle Scholar
Schauer, SG, Naylor, JF, Chow, AL, et al. Survival of casualties undergoing prehospital supraglottic airway placement versus cricothyrotomy. J Spec Oper Med. 2019;19(2):9194.CrossRefGoogle ScholarPubMed
American College of Surgeons (ACS). Advanced Trauma Life Support Student Course Manual, 10th edition. Chicago, Illinois USA: ACS; 2018.Google Scholar
Bickell, WH, Wall, MJ Jr, Pepe, PE, et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med. 1994;331(17):11051109.CrossRefGoogle ScholarPubMed
Odagiri, T, Morita, T, Yamauchi, T, Imai, K, Tei, Y, Inoue, S. Convenient measurement of systolic pressure: the reliability and validity of manual radial pulse pressure measurement. J Palliat Med. 2014;17:12261230.CrossRefGoogle ScholarPubMed
Naylor, JF, Fisher, AD, April, MD, Schauer, SG. An analysis of radial pulse strength to recorded blood pressure in the Department of Defense Trauma Registry. Mil Med. 2020;185(11-12):e1903e1907.CrossRefGoogle ScholarPubMed
Eastridge, BJ, Salinas, J, McManus, JG, et al. Hypotension begins at 110 mmHg: redefining “hypotension” with data. J Trauma. 2007;63(2):291297.Google Scholar
Eastridge, BJ, Salinas, J, Wade, CE, Blackbourne, LH. Hypotension is 100 mmHg on the battlefield. Am J Surg. 2011;202:404408.CrossRefGoogle Scholar
Cannon, CM, Braxton, CC, Kling-Smith, M, Mahnken, JD, Carlton, E, Moncure, M. Utility of the shock index in predicting mortality in traumatically injured patients. J Trauma. 2009;67(6):1426.Google ScholarPubMed
Singh, A, Ali, S, Agarwal, A, Srivastava, RN. Correlation of shock index and modified shock index with the outcome of adult trauma patients: a prospective study of 9860 patients. N Am J Med Sci. 2014;6(9):450.CrossRefGoogle ScholarPubMed
Blackmore, AR, Leonard, J, Madayag, R, Bourg, PW. Using the Trauma Quality Improvement Program metrics data to enhance clinical practice. J Trauma Nurs. 2019;26(3):121127.CrossRefGoogle ScholarPubMed
Newgard, CD, Fildes, JJ, Wu, L, et al. Methodology and analytic rationale for the American College of Surgeons Trauma Quality Improvement Program. J Am Coll Surg. 2013;216(1):147157.CrossRefGoogle ScholarPubMed
Schauer, SG, April, MD, Fisher, AD, et al. An analysis of early volume resuscitation and the association with prolonged mechanical ventilation. Transfusion. 2022;62(Suppl 1):S114s121.CrossRefGoogle ScholarPubMed
Moulton, AW, Schauer, SG, Borgman, MA. Prolonged mechanical ventilation in pediatric trauma patients in a combat zone. Pediatr Crit Care Med. 2022;23(12):10091016.CrossRefGoogle Scholar
Schauer, SG, April, MD, Arana, AA, et al. Efficacy of the compensatory reserve measurement in an emergency department trauma population. Transfusion. 2021;61(Suppl 1):S174S182.CrossRefGoogle Scholar
Schauer, SG, April, MD, Arana, AA, Long, BJ, Maddry, JK. Ketamine during resuscitation - is it as hemodynamically perfect as we think? Am J Emerg Med. 2023;73:234.e3234.e7.CrossRefGoogle ScholarPubMed
April, MD, Becker, TE, Fisher, AD, Naylor, JF, Schauer, SG. Vital sign thresholds predictive of death in the combat setting. Am J Emerg Med. 2021;44:423427.CrossRefGoogle ScholarPubMed
Eastridge, BJ, Owsley, J, Sebesta, J, et al. Admission physiology criteria after injury on the battlefield predict medical resource utilization and patient mortality. J Trauma. 2006;61(4):820823.CrossRefGoogle ScholarPubMed
Sorensen, DA, April, MD, Fisher, AD, Schauer, SG. An analysis of the shock index and pulse pressure as a predictor for massive transfusion and death in US and Coalition Iraq and Afghanistan. Med J (Ft Sam Houst Tex). 2021;(PB 8-21-07/08/09):63-68.Google Scholar
Nissley, LE, Rodriguez, R, April, MD, Schauer, SG, Stevens, GJ. Occam’s Razor and prehospital documentation: when the simpler solution resulted in better documentation. Med J (Ft Sam Houst Tex). 2023;(Per 23-1/2/3):81-86.Google Scholar
Cuenca, CM, Borgman, MA, April, MD, Fisher, AD, Schauer, SG. Validation of the age-adjusted shock index for pediatric casualties in Iraq and Afghanistan. Mil Med Res. 2020;7(1):33.Google ScholarPubMed
Gale, HL, Borgman, MA, April, MD, Schauer, SG. Pediatric trauma patient intensive care resource utilization in US military operations in Iraq and Afghanistan. Crit Care Explor. 2019;1(12):e0062.CrossRefGoogle ScholarPubMed
Naylor, JF, April, MD, Roper, JL, Hill, GJ, Clark, P, Schauer, SG. Emergency department imaging of pediatric trauma patients during combat operations in Iraq and Afghanistan. Pediatr Radiol. 2018;48(5):620625.CrossRefGoogle ScholarPubMed
Schauer, SG, Wheeler, AR, April, MD, et al. An analysis of the pediatric casualties undergoing massive transfusion in Iraq and Afghanistan. Am J Emerg Med. 2020;38(5):895899.CrossRefGoogle ScholarPubMed