Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T15:01:44.541Z Has data issue: false hasContentIssue false

XRD Microstructural Characterization of Tetragonal Pure Zirconia Powders Obtained by Controlled Hydrolysis of Zirconium Alkoxides

Published online by Cambridge University Press:  10 January 2013

P. Scardi
Affiliation:
Dipartimento di Ingegneria dei Materiali, Università di Trento, 38050 Mesiano, Trento, Italy.
L. Lutterotti
Affiliation:
Dipartimento di Ingegneria dei Materiali, Università di Trento, 38050 Mesiano, Trento, Italy.
R. Di Maggio
Affiliation:
Dipartimento di Ingegneria dei Materiali, Università di Trento, 38050 Mesiano, Trento, Italy.

Abstract

A new preparation procedure to obtain tetragonal pure zirconia powders is reported together with a detailed analysis of the profile of X-ray Diffraction (XRD) peaks. The crystallization kinetic up to 800°C is described through r.m.s. microstrain and crystallite size distributions. The results of two methods of profile analysis are compared. After thermal treatments up to 100°C the samples of amorphous gel prepared crystallize in the tetragonal structure. The monoclinic phase occurs only above this temperature. Moreover the tetragonal to monoclinic transformation has a strong effect in changing the shape of the distributions. Studying the crystallite size distributions we can infer a critical size of about 300 Å for the tetragonal crystallites to transform. The shape of the mean crystallite of a fully tetragonal sample is also described.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bansal, G. K. & Heuer, A. H. (1972). Acta Metall. 20, 12811289.Google Scholar
Bansal, G. K. & Heuer, A. H. (1974). Acta Metall. 22, 409417.Google Scholar
Benedetti, A., Fagherazzi, G., Enzo, S. & Battagliarin, M. (1988). J. Appl. Crystallogr. 21, 543549.CrossRefGoogle Scholar
Benedetti, A., Fagherazzi, G. & Pinna, F. (1989). J. Am. Ceram. Soc. 72, 467469.CrossRefGoogle Scholar
Buchanan, D. R., McCullough, R. L., & Miller, R. L. (1966). Acta Crystallogr. 20, 922924.CrossRefGoogle Scholar
Crist, B. & Cohen, J. B. (1979). J. Polym. Sci. 17, 10011010.Google Scholar
Davis, B. H. (1984). J. Am. Ceram. Soc. 67, C168.Google Scholar
Delhez, R., De Keijser, T. H., & Mittemeijer, E. J. (1987). Surface Engineering. 3, 331342.CrossRefGoogle Scholar
Enzo, S., Fagherazzi, G., Benedetti, A., & Polizzi, S. (1988). J. Appl. Crystallogr. 21, 536542.Google Scholar
Fegley, B. Jr & Barringer, E. A. (1984). Am. Ceram. Soc. Bull. 64, 187197.Google Scholar
Fegley, B. Jr., White, P., & Bowen, K. H. (1985). Am. Ceram. Soc. Bull. 64, 11151120.Google Scholar
Garvie, R. C. & Goss, M. F. (1986). J. Mater. Sci. 21, 12531257.CrossRefGoogle Scholar
Guinier, A. (1963). X-Ray Diffraction, p. 139. San Francisco: W.H. Freeman.Google Scholar
Heuer, A. H. (1981). Advances in Ceramics, Science and Technology of Zirconia, edited by Heuer, A. H. & Hobbs, L. W., Vol.3, p. 98. Columbus, Ohio: The American Ceramic Society.Google Scholar
Hugo, G. R., Muddle, B. C., & Hannik, R. H. J. (1988). Mat. Sci. Forum, Vol. 34–36, pp. 165169.Google Scholar
Ingel, R. P., Lewis, D., Bender, B. A., & Rice, R. W. (1983). Advances in Ceramics, Science and Technology of Zirconia II, edited by Claussen, N., Rühle, M. & Heuer, A.H., Vol.12, pp. 408414. Columbus, Ohio: The American Ceramics Society.Google Scholar
Keijser, Th. H. De, Langford, J. I., Mittemeijer, E. J., & Vogels, A. B. P. (1982). J. Appl. Crystallogr. 15, 308314.CrossRefGoogle Scholar
Keijser, Th. H. De, Mittemeijer, E.J., & Rozendaal, H. C. F. (1983). J. Appl. Crystallogr. 16, 309316.CrossRefGoogle Scholar
Klug, H. P. & Alexander, L. E. (1974). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed., p. 643. New York: J. Wiley & Sons.Google Scholar
Klug, H. P. & Alexander, L. E. (1974). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed., p. 661. New York: J. Wiley & Sons.Google Scholar
Kriven, W. M., Fraser, W. L., & Kennedy, S. W. (1981). Advances in Ceramics, Science and Technology of Zirconia, edited by Heuer, A. H. & Hobbs, L. W., Vol.3, pp. 8297. Columbus, Ohio: The American Ceramic Society.Google Scholar
Kundu, P., Pal, D., & Sen, Suchitra (1988). J. Mater. Sci. 23, 15391546.CrossRefGoogle Scholar
Lin, Kwang-Lung & Wang, Heey-Chang (1988). J. Mater. Sci. 23, 36663670.CrossRefGoogle Scholar
Lange, F. F. & Green, D. J. (1981). Advances in Ceramics, Science and Technology of Zirconia, edited by Heuer, A. H. & Hobbs, L. W., Vol.3, pp. 217–25. Columbus, Ohio: The American Ceramic Society.Google Scholar
Lutterotti, L. & Scardi, P. (1990). J. Appl. Crystallogr. 23. 246252.CrossRefGoogle Scholar
Mazdiyasni, K. S. (1984). Mat. Res. Soc. Symp. Proc. 32, 175186.CrossRefGoogle Scholar
Powder Diffraction File (1988). Swarthmore, PA: International Centre for Diffraction Data.Google Scholar
Rao, S. & Houska, C. R. (1986a). Acta Crystallogr. A42, 613.Google Scholar
Rao, S. & Houska, C. R. (1986b). Acta Crystallogr. A42, 1419.CrossRefGoogle Scholar
Rao, S. & Houska, C. R. (1989). Mat. Res. Soc. Symp. Proc. 138, 9397.CrossRefGoogle Scholar
Rothman, R. & Cohen, J. B. (1971). J. Appl. Phys. 42, 971979.CrossRefGoogle Scholar
Rühle, M. & Heuer, A. H. (1983). Advances in Ceramics, Science and Technology of Zirconia II, edited by Claussen, N., Rühle, M. & Heuer, A. H., Vol. 12, pp. 1432. Columbus, Ohio: The American Ceramic Society.Google Scholar
Srinivasan, R., Harris, M. B., Simpson, S. F., De Angelis, R. J., & Davis, B. H. (1988). J. Mater. Sci. 3, 787797.Google Scholar
Stokes, A. R. & Wilson, A. J. C. (1944). Proc. Phys. Soc. (London), 56, 174181.CrossRefGoogle Scholar
Tani, E., Yoshimura, M. & Somiya, S. (1983). J. Am. Ceram. Soc. 66, 1114.Google Scholar
Toraya, H., Yoshimura, M., & Somiya, S. (1984). J. Am. Ceram. Soc. 67, C119–C121.Google Scholar
Valvoda, V., Kuzel, R., Cerny, R. Jr, & Dobiasova, L. (1988). Mater. Sci. & Eng. A104, 223234.Google Scholar
Vogel, W., Haase, J. & Hosemann, R. (1974). Z. Naturforsch. Teil A, 29, 11521158.Google Scholar
Warren, B. E. & Averbach, B. L. (1950). J. Appl. Phys. 21, 595599.CrossRefGoogle Scholar
Williamson, G. K. & Smallman, R. E. (1956). Phil. Mag. 1, 3446.Google Scholar
Wolten, G. M. (1963). J. Am. Ceram. Soc. 46, 418–22.Google Scholar