Skip to main content Accessibility help
×
Home

X-ray diffraction and density functional theory studies of R(Fe0.5Co0.5)O3 (R = Pr, Nd, Sm, Eu, Gd)

  • W. Wong-Ng (a1), G. Liu (a2), I. Levin (a1), I. Williamson (a3), P. Ackerman (a4), K. R. Talley (a3), J. Martin (a1), K. AlHamdan (a5), W. Badegaish (a5), J. A. Kaduk (a6) and L. Li (a3) (a7)...

Abstract

The structure of a series of lanthanide iron cobalt perovskite oxides, R(Fe0.5Co0.5)O3 (R = Pr, Nd, Sm, Eu, and Gd), have been investigated. The space group of these compounds was confirmed to be orthorhombic Pnma (No. 62), Z = 4. From Pr to Gd, the lattice parameter a varies from 5.466 35(13) Å to 5.507 10(13) Å, b from 7.7018(2) to 7.561 75(13) Å, c from 5.443 38(10) to 5.292 00(8) Å, and unit-cell volume V from 229.170(9) Å3 to 220.376(9) Å3, respectively. While the trend of V follows the trend of the lanthanide contraction, the lattice parameter “a” increases as the ionic radius r(R 3+) decreases. X-ray diffraction (XRD) and transmission electron microscopy confirm that Fe and Co are disordered over the octahedral sites. The structure distortion of these compounds is evidenced in the tilt angles θ, ϕ, and ω, which represent rotations of an octahedron about the pseudocubic perovskite [110]p, [001]p, and [111]p axes. All three tilt angles increase across the lanthanide series (for R = Pr to R = Gd: θ increases from 12.3° to 15.2°, ϕ from 7.5° to 15.8°, and ω from 14.4° to 21.7°), indicating a greater octahedral distortion as r(R 3+) decreases. The bond valence sum for the sixfold (Fe/Co) site and the eightfold R site of R(Fe0.5Co0.5)O3 reveal no significant bond strain. Density Functional Theory calculations for Pr(Fe0.5Co0.5)O3 support the disorder of Fe and Co and suggest that this compound to be a narrow band gap semiconductor. XRD patterns of the R(Fe0.5Co0.5)O3 samples were submitted to the Powder Diffraction File.

Copyright

Corresponding author

a) Author to whom correspondence should be addressed. Electronic mail: winnie.wong-ng@nist.gov

References

Hide All
Blasse, G. (1965). “New compounds with perovskite-like structures,” J. Inorg. Nucl. Chem. 27, 9931003.
Blőchl, P. E. (1994). “Projector augmented-wave method,” Phys. Rev. B 50, 17953.
Brese, N. E. and O'Keeffe, M. (1991). “Bond-valence parameters for solids,” Acta Crystallogr. B 47, 192197.
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr. B 41, 244247.
Dresselhaus, M. S., Chen, G., Tang, M. Y., Yang, R. G., Lee, H., Wang, D. Z., Ren, Z. F., Fleurial, J. P., and Gogna, P. (2007). “Enhanced thermopower in PbSe nanocrystal quantum dot superlattices,” Adv. Mater. 19, 10431053.
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence”, J. Appl. Crystallogr. 27, 892900.
Galasso, F. and Pyle, J. (1963a). “Ordering in compounds of the A(B0 33Ta0 67)O3 type,” Inorg. Chem. 2, 482484.
Galasso, F. and Pyle, J. (1963b). “Preparation and study of ordering in A(B0 33Nb0 67)O3 perovskite-type compounds,” J. Phys. Chem. 67, 15611562.
Ghamaty, S. and Eisner, N. B. (1999). “Development of quantum well thermoelectric films,” in Proceedings of the 18th International Conference on Thermoelectrics, Baltimore, MD, pp. 485488.
Goldschmidt, V. M. (1926). “Die Gesetze der Krystallochemie,” Die Naturwissenschaften 14(21), 477485.
Grebille, D., Lambert, S., Bourée, F., and Petricek, V. (2004). “Contribution of powder diffraction for structure refinements of aperiodic misfit cobalt oxides,” J. Appl. Crystallogr. 37, 823831.
He, T., Chen, J. Z., Calvarese, T. G., and Subramanian, M. A. (2006). “Thermoelectric properties of La1−xAxCoO3 (A = Pb, Na),” Solid State Sci. 8, 467469.
Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K., and Kanatzidis, M. G. (2004). “Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit,” Science 303, 818821.
Hu, Y. F., Si, W. D., Sutter, E., and Li, Q. (2005). “ In-situ growth of c-axis-oriented Ca3Co4O9 thin films on Si(100),” Appl. Phys. Lett. 86, 082103.
Karpinsky, D. V., Troyanchuk, I. O., Dobryanskii, V. M., Szymczak, H., and Tovar, M. (2006). “Crystal structure and magnetic properties of the LaCo0.5Fe0.5O3 perovskite,” Crystallogr. Rep. 51, 596.
Kresse, G. and Furthmuller, J. (1996). “Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169.
Kresse, G. and Joubert, D. (1999). “From ultra-soft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758.
Larson, A. C. and von Dreele, R. B. (2004). General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86–748, Los Alamos, USA.
Liechtenstein, A. I., Anisimov, V. I., and Zaanen, J. (1995). “Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators,” Phys. Rev. B 52, R5467.
Masset, A. C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., and Raveau, B. (2000). “Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9 ,” Phys. Rev. B 62, 166175.
Mikami, M. and Funahashi, R. (2005). “The effect of element substitution on high-temperature thermoelectric properties of Ca3Co2O6 compounds,” J. Solid State Chem. 178, 16701674.
Mikami, H., Itaka, K., Kawaji, H., Wang, Q. J., Koinuma, H., and Lippmaa, M. (2002). “Rapid synthesis and characterization of (Ca1−x Ba x )3Co4O9 thin films using combinatorial methods,” Appl. Surf. Sci. 197, 442447.
Mikami, M., Funahashi, R., Yoshimura, M., Mori, Y., and Sasaki, T. (2003). “High-temperature thermoelectric properties of single-crystal Ca3Co2O6 ,” J. Appl. Phys. 94(10), 65796582.
Nolas, G. S., Sharp, J., and Goldsmid, H. J. (2001). Thermoelectric: Basic Principles and New Materials Developments (Springer, New York).
PDF, Powder Diffraction File (2014). Produced by International Centre for Diffraction Data, 12 Campus Blvd., Newtown Squares, PA 19073-3273, USA.
Perdew, J. P., Burke, K., and Ernzerhof, M. (1996). “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865.
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32, 751767.
Shin, W. and Murayama, N. (2000). “Thermoelectric properties of (Bi,Pb)-Sr-Co-O oxide,” J. Mater. Res. 15(2), 382.
Stephens, P. W. (1999) “Phenomenological model of anisotropic peak broadening,” J. Appl. Crystallogr. 32, 281289.
Terasaki, I., Sasago, Y., and Uchinokura, K. (1997). “Large thermoelectric power in NaCo2O4 single crystals”, Phys. Rev. B 56, 1268512687.
Thompson, P., Cox, D. E. and Hastings, J. B. (1987). “Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3 ”, J. Appl. Crystallogr. 20, 7983.
Tritt, T. M. (1996). “Thermoelectrics run hot and cold,” Science 272, 12761277.
Venkatasubramanian, R., Siivola, E., Colpitts, T. and O'Quinn, B. (2001). “Growth of one-dimensional Si/SiGe heterostructures by thermal CVD,” Nature 413, 597602.
Wang, S., Venimadhav, A., Guo, S., Chen, K., Li, Q., Soukiassian, A., Schlom, D. G., Pan, X. Q., Wong-Ng, W., Vaudin, M. D., Cahill, D. G., and Xi, X. X. (2009). “Structural and thermoelectric properties of Bi2Sr2Co2Oy thin films on LaAlO3 (100) and fused silica substrates,” Appl. Phys. Lett. 94, 022110.
Wong-Ng, W., Yang, Z., Hu, Y. F., Huang, Q., Lowhorn, N., Otani, M., Kaduk, J. A., Green, M., and Li, Q. (2009). “Thermoelectric and structural characterization of Ba2Ho(Cu3−x Co x )O6+x ,” J. Appl. Phys. 105(6), 63706.
Wong-Ng, W., Liu, G., Martin, J., Thomas, E., Lowhorn, N., and Otani, M. (2010). “Phase compatibility of the thermoelectric compounds in the Sr–Ca–Co–O system,” J. Appl. Phys., 107, 033508.
Wong-Ng, W., Luo, T., Tang, M., Xie, M., Kaduk, J. A., Huang, Q., Yang, Y., Tang, M., and Tritt, T. (2011). “crystal chemistry and thermoelectric properties of compounds in the Ca–Co–Zn–O system,” J. Solid State Chem. 184(8), 2159.
Wong-Ng, W., Laws, W., and Yan, Y. G. (2013). “Phase diagram and crystal chemistry of the La–Ca–Co–O system”, Solid State Sci. 17, 107110.
Wong-Ng, W., Laws, W., Talley, K. R., Huang, Q., Yan, J., and Kaduk, J. A. (2014). “Phase equilibria and crystal chemistry of the CaO–½Nd2O3–CoOz system at 885 °C in air,” J. Solid State Chem. 215, 128134.
Zhao, Y., Weider, D. J., Parise, J. B., and Cox, D. E. (1993a). “Thermal expansion and structural distortion of perovskite – data for NaMgF3 perovskite. Part I,” Phys. Earth Planet. Inter. 76, 116.
Zhao, Y., Weider, D. J., Parise, J. B., and Cox, D. E. (1993b). “Thermal expansion and structural distortion of perovskite – data for NaMgF3 perovskite. Part II,” Phys. Earth Planet. Inter. 76, 1734.

Keywords

Related content

Powered by UNSILO
Type Description Title
UNKNOWN
Supplementary materials

Wong-Ng supplementary material S1
Wong-Ng supplementary material

 Unknown (342 KB)
342 KB
UNKNOWN
Supplementary materials

Wong-Ng supplementary material S2
Wong-Ng supplementary material

 Unknown (340 KB)
340 KB
UNKNOWN
Supplementary materials

Wong-Ng supplementary material S3
Wong-Ng supplementary material

 Unknown (345 KB)
345 KB
UNKNOWN
Supplementary materials

Wong-Ng supplementary material S4
Wong-Ng supplementary material

 Unknown (361 KB)
361 KB

X-ray diffraction and density functional theory studies of R(Fe0.5Co0.5)O3 (R = Pr, Nd, Sm, Eu, Gd)

  • W. Wong-Ng (a1), G. Liu (a2), I. Levin (a1), I. Williamson (a3), P. Ackerman (a4), K. R. Talley (a3), J. Martin (a1), K. AlHamdan (a5), W. Badegaish (a5), J. A. Kaduk (a6) and L. Li (a3) (a7)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.