Skip to main content Accessibility help

Structures of two newly synthesized A0.50SbFe(PO4)3 (A=Mn, Cd) Nasicon phases

  • Abderrahim Aatiq (a1), Rabia Hassine (a1), My Rachid Tigha (a1) and Ismael Saadoune (a2)


Crystal structures of A0.50SbFe(PO4)3(A=Mn, Cd) phases, obtained by solid state reaction at 920 °C, were determined at room temperature from X-ray powder diffraction (XRD) using the Rietveld method. The structures of the two samples are of the Nasicon-type with the R3 space group. Hexagonal cell parameters for A=Mn and Cd are: a=8.375(1) Å, c=21.597(2) Å and a=8.313(1) Å, c=21.996(2) Å, respectively. From XRD data, it is difficult to unambiguously distinguish between Cd2+ and Sb5+ ions in Cd0.50SbFe(PO4)3 and between Mn2+ and Fe3+ cations in Mn0.50SbFe(PO4)3. Nevertheless the overall set of cation–anion distances within the Nasicon framework clearly shows that the cation distribution can be illustrated by the {[A0.50]3a[◻0.50]3b}M1SbFe(PO4)3 (A=Mn, Cd) crystallographic formula. The divalent A2+ cations and vacancies are ordered within the two positions, 3a and 3b, of the M1 sites. Structure refinements show also a quasi-ordered distribution of Sb5+ and Fe3+ ions within the Nasicon framework. Thus, each A(3a)O6(A=Mn, Cd) octahedron shares two faces with two Fe3+O6 octahedra and each vacancy (◻(3b)O6) site is located between two Sb5+O6 octahedra.


Corresponding author

a)Electronic mail:


Hide All
Aatiq, A. (2004). “Synthesis and structural characterization of ASnFe(PO4)3 (A=Na2, Ca, Cd) phosphates with the Nasicon type structure,” Powder Diffr. PODIE2 19, 272279.
Aatiq, A., and Dhoum, H. (2004). “Structure of AFeTi(PO4)3 (A=Ca, Cd) Nasicon phases from powder X-ray data,” Powder Diffr. PODIE2 19, 157161.
Aatiq, A., Ménétrier, M, Croguennec, L., Suard, E., and Delmas, C. (2002). “On the structure of Li3Ti2(PO4)3,” J. Mater. Chem. JMACEP 12, 29712978.
Aatiq, A., Ménétrier, M, El Jazouli, A., and Delmas, C. (2002). “Structural and lithium intercalation studies of Mn(0.5−x)CaxTi2(PO4)3 phases (0⩽x⩽0.50),” Solid State Ionics SSIOD3 150, 391405.
Brown, I. D., and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 41, 244247.
Cherkaoui, F., Villeneuve, G., Delmas, C., and Hagenmuller, P. (1986). “Sodium motion in the Nasicon related Na(1+x)Zr (2−x)Lnx(PO4)3 solid solution: An NMR Study,” J. Solid State Chem. JSSCBI 65, 293300.
Delmas, C., Nadiri, A., and Soubeyroux, J. L. (1988). “The Nasicon-type titanium phosphates ATi 2(PO4)3 (A=Li, Na) as electrode materials,” Solid State Ionics SSIOD3 28–30, 419423.
Fakrane, H., Aatiq, A., Lamire, M., El Jazouli, A., and Delmas, C. (1998). “Chemical, structural and magnetic studies of Mn0.5Ti2(PO4)3 and its solid solution with NaTi 2(PO4)3,” Ann. Chim. Sci. Mat. 23, 8184.
Hagman, L., and Kierkegaard, P. (1968). “The crystal structure of NaMe 2IV(PO4)3; Me=Ge, Ti, Zr,” Acta Chem. Scand. ACHSE7 22, 18221932.
Hong, H. Y-P. (1976). “Crystal structures and crystal chemistry in the system Na(1+x)Zr 2Si xP(3−xO12,” Mater. Res. Bull. MRBUAC 11, 173182.
Krimi, S., Mansouri, I., El Jazouli, A., Chaminade, J. P., Gravereau, P., and Le Flem, G. (1993). “The structure of Na5Ti(PO4)3,” J. Solid State Chem. JSSCBI 105, 561566.
Masquelier, C., Wurn, C., Rodriguez-Carvajal, J., Gaubicher, J., and Nazar, L. F. (2000). “A Powder Neutron Diffraction investigation of the two rhombohedral Nasicon analogues: γ−Na3Fe2(PO4)3 and Li3Fe2(PO4)3,” Chem. Mater. CMATEX 12, 525532.
Masse, R., Durif, A., Guitel, J. C., and Tordjman, I. (1972). “Structure cristalline du monophosphate lacunaire KTi 2(PO4)3. Monophosphates lacunaires NbGe(PO4)3 et M5+Ti(PO4)3 pour M=Sb, Nb, Ta,” Bull. Soc. Fr. Mineral. Cristallogr. BUFCAE 95, 4755.
Morgan, D., Ceder, G., Saidi, M. Y., Barker, J., Swoyer, J., Huang, H., and Adamson, G. (2003). “Experimental and computational study of the structure and electrochemical properties of monoclinic LixM2(PO4)3,” J. Power Sources JPSODZ 119–121, 755759.
Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., and Goodenoogh, J. B. (1997). “Mapping of transition metal redox energies in phosphates with Nasicon structure by lithium intercalation,” J. Electrochem. Soc. JESOAN 144, 25812586.
Rodriguez-Carvajal, J. (1997). “Fullprof, Program for Rietveld refinement,” Laboratoire Léon Brillouin (CEA-CNRS) Saclay, France.
Serghini, A., Brochu, R., Olazcuaga, R., and Gravereau, R. (1995). “The monovalent copper tin phosphate CuSn 2(PO4)3,” Mater. Lett. MLETDJ 22, 149153.
Shannon, R. D. (1976). “Revised effective ionic and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. ACACBN 32, 751767.
Woodcock, D. A., Lightfoot, P., and Smith, R. I. (1999). “Powder neutron studies of three low thermal expansion in the NZP family: K0.5Nb0.5Ti1.5(PO4)3, BaTi 2(PO4)3 and Ca0.25Sr 0.25Zr 2(PO4)3,” J. Mater. Chem. JMACEP 9, 26312636.
Yin, S. C., Grondey, H., Strobel, P. S., and Nazar, L. F. (2004). “Li2.5V2(PO4)3: A room-temperature analogue to the fast-ion conducting high-temperature γ-phase of Li3V2(PO4)3,” Chem. Mater. CMATEX 16, 14561465.


Related content

Powered by UNSILO

Structures of two newly synthesized A0.50SbFe(PO4)3 (A=Mn, Cd) Nasicon phases

  • Abderrahim Aatiq (a1), Rabia Hassine (a1), My Rachid Tigha (a1) and Ismael Saadoune (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.