Skip to main content Accessibility help

Structure of triplite LiFeSO4F powder synthesized through an ambient two-step solid-state route

  • F.-F. Ma (a1), J.-W. Mao (a1), G.-Q. Shao (a1), S.-H. Fan (a1), C. Zhu (a1), A.-L. Zhang (a1), G.-Z. Xie (a1), J.-N. Gu (a1) and J.-L. Yan (a1)...


The triplite LiFeSO4F displays both the highest potential ever reported for an Fe-based compound, as well as a comparable specific energy with that of popular LiFePO4. The synthesis is still a challenge because the present approaches are connected with long time, special equipments or organic reagents, etc. In this work, the triplite LiFeSO4F powder was synthesized through an ambient two-step solid-state route. The reaction process and phase purity were analyzed, coupled with structure refinement and electrochemical test.


Corresponding author

a) Author to whom correspondence should be addressed. Electronic mail:


Hide All
Amin, R., Balaya, P., and Maier, J. (2007). “Anisotropy of electronic and ionic transport in LiFePO4 single crystals,” Electrochem. Solid-State Lett. 10, A13A16.
Ati, M., Walker, W. T., Djellab, K., Armand, M., Recham, N., and Tarascon, J.-M. (2010). “Fluorosulfate positive electrode materials made with polymers as reacting media,” Electrochem. Solid-State Lett. 13, A150A153.
Ati, M., Melot, B. C., Chotard, J. N., Rousse, G., Reynaud, M., and Tarascon, J. M. (2011). “Synthesis and electrochemical properties of pure LiFeSO4F in the triplite structure,” Electrochem. Commun. 13, 12801283.
Ati, M., Sathiya, M., Boulineau, S., Reynaud, M., Abakumov, A., Rousse, G., Melot, B., Van Tendeloo, G., and Tarascon, J.-M. (2012a). “Understanding and promoting the rapid preparation of the triplite-phase of LiFeSO4F for use as a large-potential Fe cathode,” J. Am. Chem. Soc. 134, 1838018387.
Ati, M., Sougrati, M. T., Rousse, G., Recham, N., Doublet, M. L., Jumas, J. C., and Tarascon, J. M. (2012b). “Single-step synthesis of FeSO4F1−y OH y (0 ≤ y ≤ 1) positive electrodes for Li-based batteries,” Chem. Mater. 24, 14721485.
Barker, J., Gover, R. K. B., Burns, P., and Bryan, A. (2005). “A symmetrical lithium-ion cell based on lithium vanadium fluorophosphate, LiVPO4F,” Electrochem. Solid-State Lett. 8, A285A287.
Barpanda, P., Recham, N., Chotard, J.-N., Djellab, K., Walker, W., Armand, M., and Tarascon, J.-M. (2010). “Structure and electrochemical properties of novel mixed Li(Fe1−x M x )SO4F (M=Co, Ni, Mn) phases fabricated by low temperature ionothermal synthesis,” J. Mater. Chem. 20, 16591820.
Barpanda, P., Ati, M., Melot, B. C., Rousse, G., Chotard, J.-N., Doublet, M.-L., Sougrati, M. T., Corr, S. A., Jumas, J.-C., and Tarascon, J.-M. (2011a). “A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure,” Nat. Mater. 10, 772779.
Barpanda, P., Chotard, J. N., Delacourt, C., Reynaud, M., Filinchuk, Y., Armand, M., Deschamps, M., and Tarascon, J. M. (2011b). “LiZnSO4F made in an ionic liquid: a ceramic electrolyte composite for solid-state lithium batteries,” Angew. Chem. Int. Ed. Engl. 50, 25262531.
Cai, Y., Chen, G., Xu, X., Du, F., Li, Z., Meng, X., Wang, C., and Wei, Y. (2011). “First-principles calculations on the LiMSO4F/MSO4F (M=Fe, Co, and Ni) systems,” J. Phys. Chem. C 115, 70327037.
Chen, D., Shao, G.-Q., Li, B., Zhao, G.-G., Li, J., Liu, J.-H., Gao, Z.-S., and Zhang, H.-F. (2014). “Synthesis, crystal structure and electrochemical properties of LiFePO4F cathode material for Li-ion batteries,” Electrochim. Acta 147, 663668.
Chung, S. C., Barpanda, P., Nishimura, S. I., Yamada, Y., and Yamada, A. (2012). “Polymorphs of LiFeSO4F as cathode materials for lithium ion batteries – a first principle computational study,” Phys. Chem. Chem. Phys. 14, 86788682.
Dong, J., Yu, X., Sun, Y., Liu, L., Yang, X., and Huang, X. (2013). “Triplite LiFeSO4F as cathode material for Li-ion batteries,” J. Power Sources 244, 716720.
Eriksson, R., Sobkowiak, A., Ångström, J., Sahlberg, M., Gustafsson, T., Edström, K., and Björefors, F. (2015). “Formation of tavorite-type LiFeSO4F followed by in situ X-ray diffraction,” J. Power Sources 298, 363368.
Girish, H.-N., and Shao, G.-Q. (2015). “Advances in high-capacity Li2 MSiO4 (M=Mn, Fe, Co, Ni, …) cathode materials for lithium-ion batteries,” RSC Adv. 5, 9866698686.
Guo, Z., Wei, Y., Zhang, D., Bie, X., Zhang, Y., Zhu, K., Zhang, R., and Chen, G. (2014). “Excellent thermal stability of tavorite Li x FeSO4F used as a cathode material for lithium ion batteries,” RSC Adv. 4, 6420064203.
Jalem, R., Nakayama, M., and Kasuga, T. (2014). “Lithium ion conduction in tavorite-type LiMXO4F (MX: AlP, MgS) candidate solid electrolyte materials,” Solid State Ion. 262, 589592.
Kim, M., and Kang, B. (2017). “Highly-pure triplite 3.9 V-LiFeSO4F synthesized by a single-step solid-state process and its high electrochemical performance,” Electrochim. Acta 228, 160166.
Kim, M., Jung, Y., and Kang, B. (2015). “High electrochemical performance of 3.9 V LiFeSO4F directly synthesized by a scalable solid-state reaction within 1 h,” J. Mater. Chem. A 3, 75837590.
Larson, A. C., and Von Dreele, R. B. (2004). “General Structure Analysis System (GSAS) (Report LAUR 86-748) (Los Alamos National Laboratory, Los Alamos, New Mexico).
Lee, S., and Park, S. S. (2014). “Comparative study of tavorite and triplite LiFeSO4F as cathode materials for lithium ion batteries: structure, defect chemistry, and lithium conduction properties from atomistic simulation,” J. Phys. Chem. C 118, 1264212648.
Liu, L., Zhang, B., and Huang, X.-j. (2011). “A 3.9V polyanion-type cathode material for Li-ion batteries,” Prog. Nat. Sci. Mater. Int. 21, 211215.
Majzlan, J., Navrotsky, A., Stevens, R., Donaldson, M., Woodfield, B. F., and Boerio-Goates, J. (2005). “Thermodynamics of monoclinic Fe2(SO4)3 ,” J. Chem. Thermodyn. 37, 802809.
Padhi, A. K., Nanjundaswamy, K. S., and Goodenough, J. B. (1997). “Phospho-olivines as positive-electrode materials for rechargeable lithium batteries,” J. Electrochem. Soc. 144, 11881194.
Prabu, M., Reddy, M. V., Selvasekarapandian, S., Rao, G. V. S., and Chowdari, B. V. R. (2012). “Synthesis, impedance and electrochemical studies of lithium iron fluorophosphate, LiFePO4F cathode,” Electrochim. Acta 85, 572578.
Radha, A. V., Furman, J. D., Ati, M., Melot, B. C., Tarascon, J. M., and Navrotsky, A. (2012). “Understanding the stability of fluorosulfate Li-ion battery cathode materials: a thermochemical study of LiFe1−x Mn x SO4F (0 ≤ x ≤ 1) polymorphs,” J. Mater. Chem. 22, 2444624452.
Ramesh, T. N., Lee, K. T., Ellis, B. L., and Nazar, L. F. (2010). “Tavorite lithium iron fluorophosphate cathode materials: phase transition and electrochemistry of LiFePO4F-Li2FePO4F,” Electrochem. Solid-State Lett. 13, A43A47.
Ramzan, M., Lebègue, S., and Ahuja, R. (2010). “Crystal and electronic structures of lithium fluorosulphate based materials for lithium-ion batteries,” Phys. Rev. B: Condens. Matter 82, 125101125105.
Recham, N., Chotard, J.-N., Dupont, L., Delacourt, C., Walker, W., Armand, M., and Tarascon, J.-M. (2010). “A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries,” Nat. Mater. 9, 6874.
Salanne, M., Marrocchelli, D., and Watson, G. W. (2012). “Cooperative mechanism for the diffusion of Li+ ions in LiMgSO4F,” J. Phys. Chem. C 116, 1861818625.
Sebastian, L., Gopalakrishnan, J., and Piffard, Y. (2002). “Synthesis, crystal structure and lithium ion conductivity of LiMgFSO4 ,” J. Mater. Chem. 12, 374377.
Sobkowiak, A., Roberts, M. R., Häggström, L., Ericsson, T., Andersson, A. M., Edström, K., Gustafsson, T., and Björefors, F. (2014). “Identification of an intermediate phase, Li1/2FeSO4F, formed during electrochemical cycling of tavorite LiFeSO4F,” Chem. Mater. 26, 46204628.
Tripathi, R., Popov, G., Ellis, B. L., Huq, A., and Nazar, L. F. (2012). “Lithium metal fluorosulfate polymorphs as positive electrodes for Li-ion batteries: synthetic strategies and effect of cation ordering,” Energy Environ. Sci. 5, 62386246.
Tripathi, R., Popov, G., Sun, X., Ryan, D. H., and Nazar, L. F. (2013). “Ultra-rapid microwave synthesis of triplite LiFeSO4F,” J. Mater. Chem. A 1, 29902994.
Yahia, M. B., Lemoigno, F., Rousse, G., Boucher, F., Tarascon, J.-M., and Doublet, M.-L. (2012). “Origin of the 3.6 V to 3.9 V voltage increase in the LiFeSO4F cathodes for Li-ion batteries,” Energy Environ. Sci. 5, 95849594.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Ma et al. supplementary material
Ma et al. supplementary material 1

 Unknown (19 KB)
19 KB

Structure of triplite LiFeSO4F powder synthesized through an ambient two-step solid-state route

  • F.-F. Ma (a1), J.-W. Mao (a1), G.-Q. Shao (a1), S.-H. Fan (a1), C. Zhu (a1), A.-L. Zhang (a1), G.-Z. Xie (a1), J.-N. Gu (a1) and J.-L. Yan (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.