Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-20T02:17:30.532Z Has data issue: false hasContentIssue false

Structure of melt-quenched AgIn3Te5

Published online by Cambridge University Press:  05 March 2012

C. Rangasami
Affiliation:
Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
P. Malar
Affiliation:
Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 17542, Singapore
T. Osipowicz
Affiliation:
Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 17542, Singapore
Mahaveer K. Jain
Affiliation:
Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
S. Kasiviswanathan*
Affiliation:
Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
*
a)Author to whom correspondence should be addressed. Electronic mail: kasi@iitm.ac.in

Abstract

Polycrystalline AgIn3Te5 synthesized by melt-quench technique has been analyzed using proton induced X-ray emission (PIXE), X-ray diffraction (XRD), and selected area electron diffraction. PIXE analysis yielded the content of Ag, In, and Te, respectively, to be 9.76%, 31.18%, and 59.05% by weight. Structure refinement was carried out considering those space groups from I- and P-type tetragonal systems which possess 4 symmetry and preserve the anion sublattice arrangement of the chalcopyrite structure (space group: I42d) as well. The results showed that AgIn3Te5 synthesized by melt-quench method crystallizes with P-type tetragonal structure (space group: P42c; unit-cell parameters a = 6.2443(8) and c = 12.5058(4) Å), the presence of which was corroborated by selected area electron diffraction studies.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bodnar, I. V., Vaipolin, A. A., Rud, V. Y., and Rud, Y. V. (2006). “Crystal structure of CuIn3Se5 and CuIn5Se8 ternary compounds,” Tech. Phys. Lett. 32, 10031005. 10.1134/S1063785006120029Google Scholar
Campbell, J. L., Hopman, T. L., Maxwell, J. A., and Nejedly, Z. (2000). “The Guelph PIXE software package III: Alternative proton database,” Nucl. Instrum. Methods B 170, 193204. 10.1016/S0168-583X(00)00156-7Google Scholar
Chang, C. H., Wei, S. H., Johnson, J. W., Zhang, S. B., Leyarovska, N., Bunker, G., and Anderson, T. J. (2003). “Local structure of CuInSe2: X-ray absorption fine structure study and first-principles calculations,” Phys. Rev. B 68, 054108 (9). 10.1103/PhysRevB.68.054108Google Scholar
Chiang, P. W., O’Kane, D. F., and Mason, D. R. (1967). “Phase diagram of the pseudo-binary system Ag2Te-In2Te3 and semiconducting properties of AgIn9Te14,” J. Electrochem. Soc. 114, 759760. 10.1149/1.2426724CrossRefGoogle Scholar
Diaz, M., De Chalbaud, L. M., Sagredo, V., Tinco, T., and Pineda, C. (2000). “Synchrotron structural study of AgInTe2,” Phys. Status Solidi B 220, 281284. 10.1002/1521-3951(200007)220:1<>1.0.CO;2-U3.0.CO;2-X>CrossRefGoogle Scholar
Diaz, R., Bisson, L., Agullo-Rueda, F., Abd Lefdil, M., and Rueda, F. (2005). “Effect of composition gradient on CuIn3Te5 single-crystal properties and micro-Raman and infrared spectroscopies,” Appl. Phys. A 81 433438. 10.1007/s00339-005-3245-xGoogle Scholar
Hanada, T., Yamana, A., Nakamura, Y., Nittono, O., and Wada, T. (1997). “Crystal structure of CuIn3Se5 semiconductor studied using electron and X-ray diffractions,” Jpn. J. Appl. Phys. 36, L1494L1497. 10.1143/JJAP.36.L1494Google Scholar
Honle, W., Kühn, G., and Boehnke, U. C. (1988). “Crystal structures of two quenched Cu-In-Se phases,” Cryst. Res. Technol. 23, 13471354. 10.1002/crat.v23:10/11CrossRefGoogle Scholar
International Tables for X-Ray Crystallography, Vol. I. Symmetry Groups, edited by Henry, N. F. M. and Lonsdale, K. (1965) (The Kynoch Press, Birmingham, England).Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS), Report LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM.Google Scholar
Mandal, K. C., Smirnov, A., Roy, U. N., and Burger, A. (2003). “Thermally evaporated AgGaTe2 thin films for low-cost p-AgGaTe2/n-Si heterojunction solar cells,” Mater. Res. Soc. Symp. Proc. 744, 131136.Google Scholar
Marin, G., Delgado, J. M., Wasim, S. M., Rincon, C., Sanchez Perez, G., Mora, A. E., Bocaranda, P., and Henao, J. A. (2000). “Crystal growth and structural, electrical, and optical characterization of CuIn3Te5 and CuGa3Te5 ordered vacancy compounds,” J. Appl. Phys. 87, 78147819. 10.1063/1.373460CrossRefGoogle Scholar
Merino, J. M., Mahanty, S., Leon, M., Diaz, R., Rueda, F., Martin de Vidales, J. L. (2000). “Structural characterization of CuIn2Se3.5, CuIn3Se5 and CuIn5Se8 compounds,” Thin Solid Films 361–362, 7073. 10.1016/S0040-6090(99)00771-3Google Scholar
O’Kane, D. F. and Mason, D. R. (1964). “Semiconducting properties of AgIn3Te5,” J. Electrochem. Soc. 3, 546549. 10.1149/1.2426179Google Scholar
Paszkowicz, W., Lewandowska, R., and Bacewicz, R. (2004). “Rietveld refinement for CuInSe2 and CuIn3Se5,” J. Alloys Compd. 362, 241247. 10.1016/S0925-8388(03)00592-9Google Scholar
Rincon, C., Wasim, S. M., Marin, G., Hernandez, E., Delgado, J. M., and Galibert, J. (2000). “Raman spectra of CuInTe2, CuIn3Te5, and CuIn5Te8 ternary compounds,” J. Appl. Phys. 88, 34393444. 10.1063/1.1289225Google Scholar
Sanchez, A., Melendez, L., Castro, J., Hernandez, J. A., Hernandez, E., and Durante Rincon, C. A. (2005). “Structural, optical, and electrical properties of AgIn5Te8,” J. Appl. Phys. 97, 053505(4). 10.1063/1.1854207Google Scholar
Schmid, D., Ruckh, M., Granwald, F., and Schock, H. W. (1993). “Chalcopyrite/defect chalcopyrite hetrojunctions on the basis of CuInSe2,” J. Appl. Phys. 73, 29022909. 10.1063/1.353020Google Scholar
Tham, A. T., Su, D. S., Neumann, W., Schubert-Bischoff, P., Beliharz, C., and Benz, K. W. (2000). “Transmission electron microscopy study of CuIn3Se5,” Cryst. Res. Technol. 35, 823830. 10.1002/1521-4079(200007)35:6/7<>1.0.CO;2-UGoogle Scholar
The Rietveld Method (IUCr Monograph on Crystallography, No. 5), Edited by Young, R. A. (1993) (Oxford University Press, New York).CrossRefGoogle Scholar
Tseng, B. H. and Wert, C. A. (1989). “Defect-ordered phases in a multiphase Cu-In-Se material,” J. Appl. Phys. 65, 22542257. 10.1063/1.342838Google Scholar
Xue, D., Betzler, K., and Hesse, H. (2000). “Dielectric properties of I-III-VI2-type chalcopyrite semiconductors,” Phys. Rev. B 62, 1354613551. 10.1103/PhysRevB.62.13546Google Scholar
Yamada, K., Hoshino, N., and Nakada, T. (2006). “Crystallographic and electrical properties of wide gap Ag(In1-xGax)Se2 thin films and solar cells,” Sci. Technol. Adv. Mater. 7, 4245. 10.1016/j.stam.2005.11.016Google Scholar
Zhang, S. B., Wei, S. H., and Zunger, A. (1997). “Stabilizaion of ternary compounds via ordered arrays of defect pairs,” Phys. Rev. Lett. 78, 40594062. 10.1103/PhysRevLett.78.4059CrossRefGoogle Scholar