Skip to main content Accessibility help
×
Home

Structure of melt-quenched AgIn3Te5

  • C. Rangasami (a1), P. Malar (a2), T. Osipowicz (a2), Mahaveer K. Jain (a1) and S. Kasiviswanathan (a1)...

Abstract

Polycrystalline AgIn3Te5 synthesized by melt-quench technique has been analyzed using proton induced X-ray emission (PIXE), X-ray diffraction (XRD), and selected area electron diffraction. PIXE analysis yielded the content of Ag, In, and Te, respectively, to be 9.76%, 31.18%, and 59.05% by weight. Structure refinement was carried out considering those space groups from I- and P-type tetragonal systems which possess 4 symmetry and preserve the anion sublattice arrangement of the chalcopyrite structure (space group: I42d) as well. The results showed that AgIn3Te5 synthesized by melt-quench method crystallizes with P-type tetragonal structure (space group: P42c; unit-cell parameters a = 6.2443(8) and c = 12.5058(4) Å), the presence of which was corroborated by selected area electron diffraction studies.

Copyright

Corresponding author

a)Author to whom correspondence should be addressed. Electronic mail: kasi@iitm.ac.in

References

Hide All
Bodnar, I. V., Vaipolin, A. A., Rud, V. Y., and Rud, Y. V. (2006). “Crystal structure of CuIn3Se5 and CuIn5Se8 ternary compounds,” Tech. Phys. Lett. 32, 10031005. 10.1134/S1063785006120029
Campbell, J. L., Hopman, T. L., Maxwell, J. A., and Nejedly, Z. (2000). “The Guelph PIXE software package III: Alternative proton database,” Nucl. Instrum. Methods B 170, 193204. 10.1016/S0168-583X(00)00156-7
Chang, C. H., Wei, S. H., Johnson, J. W., Zhang, S. B., Leyarovska, N., Bunker, G., and Anderson, T. J. (2003). “Local structure of CuInSe2: X-ray absorption fine structure study and first-principles calculations,” Phys. Rev. B 68, 054108 (9). 10.1103/PhysRevB.68.054108
Chiang, P. W., O’Kane, D. F., and Mason, D. R. (1967). “Phase diagram of the pseudo-binary system Ag2Te-In2Te3 and semiconducting properties of AgIn9Te14,” J. Electrochem. Soc. 114, 759760. 10.1149/1.2426724
Diaz, M., De Chalbaud, L. M., Sagredo, V., Tinco, T., and Pineda, C. (2000). “Synchrotron structural study of AgInTe2,” Phys. Status Solidi B 220, 281284. 10.1002/1521-3951(200007)220:1<>1.0.CO;2-U
Diaz, R., Bisson, L., Agullo-Rueda, F., Abd Lefdil, M., and Rueda, F. (2005). “Effect of composition gradient on CuIn3Te5 single-crystal properties and micro-Raman and infrared spectroscopies,” Appl. Phys. A 81 433438. 10.1007/s00339-005-3245-x
EKSPLA (2011) <http://www.ekspla.com> [accessed 7/25/2011]
Hanada, T., Yamana, A., Nakamura, Y., Nittono, O., and Wada, T. (1997). “Crystal structure of CuIn3Se5 semiconductor studied using electron and X-ray diffractions,” Jpn. J. Appl. Phys. 36, L1494L1497. 10.1143/JJAP.36.L1494
Honle, W., Kühn, G., and Boehnke, U. C. (1988). “Crystal structures of two quenched Cu-In-Se phases,” Cryst. Res. Technol. 23, 13471354. 10.1002/crat.v23:10/11
International Tables for X-Ray Crystallography, Vol. I. Symmetry Groups, edited by Henry, N. F. M. and Lonsdale, K. (1965) (The Kynoch Press, Birmingham, England).
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS), Report LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM.
Mandal, K. C., Smirnov, A., Roy, U. N., and Burger, A. (2003). “Thermally evaporated AgGaTe2 thin films for low-cost p-AgGaTe2/n-Si heterojunction solar cells,” Mater. Res. Soc. Symp. Proc. 744, 131136.
Marin, G., Delgado, J. M., Wasim, S. M., Rincon, C., Sanchez Perez, G., Mora, A. E., Bocaranda, P., and Henao, J. A. (2000). “Crystal growth and structural, electrical, and optical characterization of CuIn3Te5 and CuGa3Te5 ordered vacancy compounds,” J. Appl. Phys. 87, 78147819. 10.1063/1.373460
Merino, J. M., Mahanty, S., Leon, M., Diaz, R., Rueda, F., Martin de Vidales, J. L. (2000). “Structural characterization of CuIn2Se3.5, CuIn3Se5 and CuIn5Se8 compounds,” Thin Solid Films 361–362, 7073. 10.1016/S0040-6090(99)00771-3
O’Kane, D. F. and Mason, D. R. (1964). “Semiconducting properties of AgIn3Te5,” J. Electrochem. Soc. 3, 546549. 10.1149/1.2426179
Paszkowicz, W., Lewandowska, R., and Bacewicz, R. (2004). “Rietveld refinement for CuInSe2 and CuIn3Se5,” J. Alloys Compd. 362, 241247. 10.1016/S0925-8388(03)00592-9
Rincon, C., Wasim, S. M., Marin, G., Hernandez, E., Delgado, J. M., and Galibert, J. (2000). “Raman spectra of CuInTe2, CuIn3Te5, and CuIn5Te8 ternary compounds,” J. Appl. Phys. 88, 34393444. 10.1063/1.1289225
Sanchez, A., Melendez, L., Castro, J., Hernandez, J. A., Hernandez, E., and Durante Rincon, C. A. (2005). “Structural, optical, and electrical properties of AgIn5Te8,” J. Appl. Phys. 97, 053505(4). 10.1063/1.1854207
Schmid, D., Ruckh, M., Granwald, F., and Schock, H. W. (1993). “Chalcopyrite/defect chalcopyrite hetrojunctions on the basis of CuInSe2,” J. Appl. Phys. 73, 29022909. 10.1063/1.353020
Tham, A. T., Su, D. S., Neumann, W., Schubert-Bischoff, P., Beliharz, C., and Benz, K. W. (2000). “Transmission electron microscopy study of CuIn3Se5,” Cryst. Res. Technol. 35, 823830. 10.1002/1521-4079(200007)35:6/7<>1.0.CO;2-U
The Rietveld Method (IUCr Monograph on Crystallography, No. 5), Edited by Young, R. A. (1993) (Oxford University Press, New York).
Tseng, B. H. and Wert, C. A. (1989). “Defect-ordered phases in a multiphase Cu-In-Se material,” J. Appl. Phys. 65, 22542257. 10.1063/1.342838
Xue, D., Betzler, K., and Hesse, H. (2000). “Dielectric properties of I-III-VI2-type chalcopyrite semiconductors,” Phys. Rev. B 62, 1354613551. 10.1103/PhysRevB.62.13546
Yamada, K., Hoshino, N., and Nakada, T. (2006). “Crystallographic and electrical properties of wide gap Ag(In1-xGax)Se2 thin films and solar cells,” Sci. Technol. Adv. Mater. 7, 4245. 10.1016/j.stam.2005.11.016
Zhang, S. B., Wei, S. H., and Zunger, A. (1997). “Stabilizaion of ternary compounds via ordered arrays of defect pairs,” Phys. Rev. Lett. 78, 40594062. 10.1103/PhysRevLett.78.4059

Keywords

Related content

Powered by UNSILO

Structure of melt-quenched AgIn3Te5

  • C. Rangasami (a1), P. Malar (a2), T. Osipowicz (a2), Mahaveer K. Jain (a1) and S. Kasiviswanathan (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.