Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T19:38:43.341Z Has data issue: false hasContentIssue false

Standard X-Ray Diffraction Powder Patterns of Fourteen Ceramic Phases

Published online by Cambridge University Press:  10 January 2013

Winnie Wong-Ng
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, U.S.A.
Howard F. McMurdie
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, U.S.A.
Boris Paretzkin
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, U.S.A.
M. A. Kuchinski
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, U.S.A.
Alan L. Dragoo
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, U.S.A.

Extract

Fourteen reference patterns of oxide ceramics are reported. Included in the fourteen reference patterns are data for two high critical temperature superconducting oxide related phases (BaCuHo2O5 and Ba2YCu3O6.56). The general methods of producing these X-ray powder diffraction reference patterns were described previously in this journal (Vol. 1, No. 1, pg. 40 (1986)).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1.Schneider, S. J., Roth, R. S., and Waring, J. (1961). J. Res. NBS 65A, 345.CrossRefGoogle Scholar
2.Dalziel, J. A. W., and Welch, A. J. E. (1960). Acta. Cryst. 13, 956.CrossRefGoogle Scholar
1.Buschow, K. H. J., Van Vucht, J. H. N., and Van Der Hoogenhof, W. W. (1976). J. Less. Common Met. 50, 145.CrossRefGoogle Scholar
1.Michel, C., and Raveau, B. (1982). J. Solid State Chem. 43, 73.CrossRefGoogle Scholar
1.Wong-Ng, W., and Cook, L. P. (1987). Adv. Ceram. Mater. 23B, 624.CrossRefGoogle Scholar
1.Townes, W. D., Fang, J. H., and Perrotta, A. (1967). Z. Kristallogr. 125, 437.CrossRefGoogle Scholar
2.Routil, R. J., and Barham, (1974). Can. J. Chem. 52, 3235.CrossRefGoogle Scholar
1.Hawthorne, F. C., and Calvo, C. (1978). J. Solid State Chem. 26, 345.CrossRefGoogle Scholar
1.Husson, E., Repelin, Y., and Brusset, H. (1979). Bull. Soc. Chim. France 1979, 426.Google Scholar
1.Jahnberg, L. (1963). Acta. Chem. Scand. 17, 2548.CrossRefGoogle Scholar
1.Geller, S. (1957). Acta Crystallogr. 10, 243.CrossRefGoogle Scholar
2.Schneider, S. J., Roth, R. S., and Waring, J. (1961). J. Res. Natl. Bur. Stand. (U.S.) 65A, 345.CrossRefGoogle Scholar
1.Bayer, G. (1962). Ber. Dtsch. Keram. Ges. 39, 535.Google Scholar
1.Gunawardane, R. P., and Glasser, F. P. (1975). Z. Anorg. Allg. Chem. 411, 163.Google Scholar
2.Berezhnoi, A. S., Lapina, N. V., Lifshits, E. V., and Shevyakova, E. P. (1975). Inorganic Mat. (USSR) 12, 1356.Google Scholar
1.Roedder, E. W. (1951). Am. J. Sci. 249, 224.CrossRefGoogle Scholar
1.Peacor, D. R. (1973). Zeit. Kristall. 138, 274.CrossRefGoogle Scholar
1.Roth, R. S., Private Communication.Google Scholar