Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T21:25:37.696Z Has data issue: false hasContentIssue false

Quantitative analysis of mineralized white Portland clinkers: The structure of Fluorellestadite

Published online by Cambridge University Press:  06 March 2012

Isabel Pajares
Affiliation:
Instituto de Ciencias de la Construcción “Eduardo Torroja,” CSIC, C/Serrano Galvache s/n, 28033-Madrid, Spain
Ángeles G. De la Torre
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071-Málaga, Spain
Sagrario Martínez-Ramírez
Affiliation:
Instituto de Ciencias de la Construcción “Eduardo Torroja,” CSIC, C/Serrano Galvache s/n, 28033-Madrid, Spain
Francisca Puertas
Affiliation:
Instituto de Ciencias de la Construcción “Eduardo Torroja,” CSIC, C/Serrano Galvache s/n, 28033-Madrid, Spain
María-Teresa Blanco-Varela
Affiliation:
Instituto de Ciencias de la Construcción “Eduardo Torroja,” CSIC, C/Serrano Galvache s/n, 28033-Madrid, Spain
Miguel A. G. Aranda*
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071-Málaga, Spain
*
a)Author to whom correspondence should be addressed: Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071-Málaga, Spain, Phone: Int+34 952131874, Fax: Int+34 952132000, electronic mail: g_aranda@uma.es

Abstract

Fluorellestadite, Ca10(SiO4)3(SO4)3F2, has been synthesized as single phase. This compound crystallizes in the apatite type structure, s.g. P63/m, with parameters a=9.4417(1) Å, c=6.9396(1) Å and V=535.76(1) Å3. The refinement of its crystal structure converged to RWP=12.33% and RF=4.58%. The atomic parameters have been used to analyze the phase content of mineralized white Portland clinkers. These clinkers contain Ca3SiO5, Ca2SiO4, Ca12Al14O32F2 and Ca10(SiO4)3(SO4)3F2. The agreement between the elemental composition inferred from the Rietveld phase analysis and that measured by XRF is noteworthy. This comparison does not take into account the presence of amorphous phases and unmodeled elemental substitutions in crystalline phases. Similar Rietveld studies on commercial white Portland clinkers are also shown to be feasible.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bish, D. L.and Howard, S. A. (1988). “Quantitative phase analysis using the Rietveld method,” J. Appl. Crystallogr. JACGAR 21, 8691. acr, JACGAR CrossRefGoogle Scholar
Blanco-Varela, M. T., Vázquez, T., and Palomo, A. (1985). Spanish Patent N° 54269.Google Scholar
Blanco-Varela, M. T., Vázquez, T., and Palomo, A. (1986). “A study of a new liquid-phase to obtain low-energy cements,” Cem. Concr. Res. CCNRAI 16, 97104. ccn, CCNRAI CrossRefGoogle Scholar
Blanco-Varela, M. T., Vázquez, T., Palomo, A., Puertas, F., and Giménez, S. (1990). Spanish Patent N° 9001906.Google Scholar
Blanco-Varela, M. T., Palomo, A., Puertas, F., and Vázquez, T. (1997). “CaF2 and CaSO4 in white cement clinker production,” Adv. Cem. Res. ACEREN 9, 105113. 9id, ACEREN CrossRefGoogle Scholar
Bogue, R. H. (1929). Industrial Engineering Chemistry (Analytical Edition) 1, 192.CrossRefGoogle Scholar
Christensen, N. H. and Johansen, V. (1980). “Mineralizers and fluxes in the clinkering process: Kinetics effects on alite formation,” 7th Inter. Cong. Chem. Cement (Paris) II, I-1-I-16.Google Scholar
De la Torre, A. G., Cabeza, A., Calvente, A., Bruque, S., and Aranda, M. A. G. (2001). “Full phase analysis of Portland clinker by penetrating synchrotron powder diffraction,” Anal. Chem. ANCHAM 73, 151156. anc, ANCHAM CrossRefGoogle ScholarPubMed
De la Torre, A. G., Bruque, S., Campo, J., and Aranda, M. A. G. (2002). “The superstructure of C3S from synchrotron and neutron powder diffraction and its role in quantitative phase analyses,” Cem. Concr. Res. CCNRAI 32, 13471356. ccn, CCNRAI CrossRefGoogle Scholar
Dollase, W. A. (1986). “Correction of intensities for preferred orientation in powder diffractometry: application of the March model,” J. Appl. Crystallogr. JACGAR 19, 267272. acr, JACGAR CrossRefGoogle Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to diaxial divergence,” J. Appl. Crystallogr. JACGAR 27, 892900. acr, JACGAR CrossRefGoogle Scholar
Giménez, S., Blanco-Varela, M. T., Palomo, A., and Puertas, F. (1991). “Production of low energy requirements cement. An industrial test,” Zement-Kalk-Gips ZZZZZZ 44, 1215.Google Scholar
Giménez, S.and Blanco-Varela, M. T. (1995). “Solid state phases relationship in the CaO-SiO2-Al2O3-CaF2-CaSO4 system,” Cem. Concr. Res. CCNRAI 25, 778782. ccn, CCNRAI Google Scholar
Goswami, G.and Panda, J. D. (1999). “Application of XRD in a rapid quality control system of cement,” Powder Diffr. PODIE2 14, 114117. pdj, PODIE2 CrossRefGoogle Scholar
Guirado, F., Galí, S., and Chinchón, S. (2000). “Quantitative Rietveld analysis of aluminous cement clinker phases,” Cem. Concr. Res. CCNRAI 30, 10231029. ccn, CCNRAI CrossRefGoogle Scholar
Hill, R. J.and Howard, C. J. (1987). “Quantitative phase analysis from neutron powder diffraction data using the Rietveld method,” J. Appl. Crystallogr. JACGAR 20, 467474. acr, JACGAR CrossRefGoogle Scholar
Larson, A. R. and Von Dreele, R. B. (1994). “General Structural Analysis System,” Los Alamos National Lab. Rep. No. LA-UR-86-748. GSAS program @ http://public.lanl.gov:80/gsas/.Google Scholar
Mackie, P. E.and Young, R. A. (1973). “Location of Nd dopant in fluorapatite, Ca5(PO4)3F: Nd,” J. Appl. Crystallogr. JACGAR 6, 2631. acr, JACGAR CrossRefGoogle Scholar
Madsen, I. C., Scarlett, N. V. Y., Cranswick, L. M. D., and Lwin, T. (2001). “Outcomes of the International Union of Crystallography Commission on powder diffraction round robin on quantitative phase analysis: samples 1a to 1h,” J. Appl. Crystallogr. JACGAR 34, 409426. acr, JACGAR CrossRefGoogle Scholar
McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D., and Scardi, P. (1999). “Rietveld refinements guidelines,” J. Appl. Crystallogr. JACGAR 32, 3650. acr, JACGAR CrossRefGoogle Scholar
Moir, G. K. (1982). “Mineraliser high alite cements,” World Cem. 374–382.Google Scholar
Mumme, W. G., Hill, R. J., Bushnell-Wye, G., and Segnit, E. R. (1995). “Rietveld structure refinement, crystal chemistry and calculated powder diffraction data for the polymorphs of dicalcium silicate and related phases,” Neues Jahrb. Mineral., Abh. NJMIAK 169, 3568. njm, NJMIAK Google Scholar
Organova, N. I., Rastsvetaeva, R. K., Kuz’mina, O. V., Arapova, G. A., Litsarev, M. A., and Fin’ko, V. I. (1994). “Crystal structure of low-symmetry ellestadite in comparison with other apatitelike structures,” Kristallografiya KRISAJ 39, 278282. krg, KRISAJ Google Scholar
Pajares, I., Puertas, F., Blanco-Varela, M. T., Vázquez, T., and Martínez-Ramírez, S. (2001). “Influencia del contenido de aluminatos en la aptitud a la cocción, la hidratación y el comportamiento mecánico de cementos blancos mineralizados con CaF2 y CaSO4,Cemento y Hormigón ZZZZZZ 825, 626635.Google Scholar
Pöllmann, H. and Neubauer, J. (1993). ICDD Grant-in-Aid.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetics structures,” J. Appl. Crystallogr. JACGAR 2, 6571. acr, JACGAR CrossRefGoogle Scholar
Schmidt, R.and Pöllmann, H. (2000). “Quantification of calcium sulpho-aluminate cement by Rietveld analysis,” Mater. Sci. Forum MSFOEP 321–324, 10221027. msf, MSFOEP CrossRefGoogle Scholar
Taylor, H. F. W. (1997). Cement Chemistry, 2nd ed. (Thomas Telford, London).CrossRefGoogle Scholar
Taylor, J. C., Hinczak, I., and Matulis, C. E. (2000). “Rietveld full-profile quantification of Portland cement clinker: the importance of including a full crystallography of the major phase polymorphs,” Powder Diffr. PODIE2 15, 718. pdj, PODIE2 CrossRefGoogle Scholar
Thompson, P., Cox, D. E., and Hasting, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,J. Appl. Crystallogr. JACGAR 20, 7983. acr, JACGAR CrossRefGoogle Scholar
UNE STANDARD 80-243-86. (1986). “Métodos de ensayo de cementos. Determinación del óxido de calcio libre; método del etilenglicol.”Google Scholar
UNE STANDARD 80-225-93. (1993). “Métodos de ensayo de cementos. Análisis químico. Determinación del dióxido de silicio (SiO2) reactivo en los cementos, en las puzolanas y en las cenizas volantes.”Google Scholar
Von Dreele, R. B. (1997). “Quantitative texture analysis by Rietveld refinement,” J. Appl. Crystallogr. JACGAR 30, 517525. acr, JACGAR CrossRefGoogle Scholar
Wenxi, H., Guanglliant, X., and Zhongyuan, L. (1992). “The effect of Calcium Fluorsulpho-Silicate on Formation of Calcium Silicate,” 9th Inter. Congr. Chem. Cem. (New Delhi), 2, 379–385.Google Scholar
Williams, P. P. (1973). “Refinement of the structure of (CaO)11(Al2O3)7CaF2,Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 29, 15501551. acb, ACBCAR CrossRefGoogle Scholar