Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T10:04:13.869Z Has data issue: false hasContentIssue false

QPDA – A User-Friendly, Interactive Program for Quantitative Phase and Crystal Size/Strain Analysis of Powder Diffraction Data

Published online by Cambridge University Press:  10 January 2013

I.C. Madsen
Affiliation:
CSIRO Division of Mineral Products, P.O. Box 124, Port Melbourne, 3207, Victoria, Australia.
R.J. Hill
Affiliation:
CSIRO Division of Mineral Products, P.O. Box 124, Port Melbourne, 3207, Victoria, Australia.

Abstract

Recent developments in the Rietveld method for the analysis of powder diffraction data have seen the method evolve from its original purpose of crystal structure refinement to include the determination of phase abundance in polycrystalline mixtures and the estimation of crystal size and strain parameters. However, the Rietveld method is not easy to use and may deter many powder diffractionists, who are not interested in structure refinement per se, from using the method in its non-structural applications.

In order to overcome the difficulties in using the Rietveld method, a program, QPDA (for Quantitative Powder Diffraction Analysis), has been written that sets the conditions necessary for a single or multi-phase refinement, runs the Rietveld program and extracts phase abundance and size/strain information from the refined parameters. The program comprises a user-friendly, default-driven system of subroutines, written initially in VAX Fortran, and operates from a database of inorganic materials frequently encountered in a wide range of minerals and materials science industries.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Caglioti, G., Paoletti, A.& Ricci, F.P.(1958). Nucl. Instrum. 3, 223.CrossRefGoogle Scholar
David, W.I.F.& Matthewman, J.C.(1984). Rutherford Appleton Laboratory Report RAL 84–064, Chilton, Didcot, Oxon, England.Google Scholar
de Keijser, Th.H., Mittemeijer, E.J.& Rozendaal, H.C.F.(1983). J. Appl. Crystallogr. 16, 309.CrossRefGoogle Scholar
Dollase, W.A.(1986). J. Appl. Crystallogr. 19, 267.CrossRefGoogle Scholar
Hastings, J.B., Thomlinson, W.& Cox, D.E.(1984). J. Appl. Crystallogr. 17, 85.CrossRefGoogle Scholar
Hill, R.J.(1983). J. Power Sources, 9, 55.CrossRefGoogle Scholar
Hill, R.J.& Howard, C.J.(1985). J. Appl. Crystallogr. 18, 173.CrossRefGoogle Scholar
Hill, R.J.& Howard, C.J.(1986). Australian Atomic Energy Commission (now ANSTO), Report No. M112, Lucas Heights Research Laboratories, NSW, Australia.Google Scholar
Hill, R.J.& Howard, C.J.(1987a). J. Appl. Crystallogr. 20, 467CrossRefGoogle Scholar
Hill, R.J.& Howard, C.J.(1987b). Acta Cryst. A43(SuppL), Abstr. 12.X-7, p. C227.Google Scholar
Hill, R.J., Howard, C.J.& Reichert, B.E.(1988). Mat. Sci. Forum, 34–36, 159.Google Scholar
Hill, R.J.& Madsen, I.C.(1984). J. Appl. Crystallogr. 17, 297.CrossRefGoogle Scholar
Hill, R.J.& Madsen, I.C.(1988). J. Appl. Crystallogr. 21, 398.Google Scholar
Hill, R.J., Rand, D.A.J.& Woods, R.(1987). Power Sources 11, Pearce, L.J.(Ed.), Proc. 15th Int. Power Sources Symp., Brighton, Sept. 1986, Int. Power Sources Symp. Comm., Leatherhead, England, p. 459.Google Scholar
Howard, C.J., Hill, R.J.& Reichert, B.E.(1988). Acta Cryst. B44, 116.CrossRefGoogle Scholar
Howard, C.J., Hill, R.J.& Sufi, M.A.M.(1988). Chem. in Austral.Oct. 1988, 367.Google Scholar
Klug, H.P.& Alexander, L.E.(1974). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, New York: Wiley.Google Scholar
Rietveld, H.M.(1969). J. Appl. Crystallogr. 2, 65.CrossRefGoogle Scholar
Scherrer, P.(1918). Goettinger Nachrichten, 2, 98.Google Scholar
Wiles, D.B.& Young, R.A.(1981). J. Appl. Crystallogr. 14, 149.CrossRefGoogle Scholar