Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T09:14:32.964Z Has data issue: false hasContentIssue false

Powder diffraction data for the homeotypic intermetallic compounds (Co, Ni)4Al13(h) and Co2NiAl9

Published online by Cambridge University Press:  10 January 2013

K. Gotzmann
Affiliation:
Max-Planck-Institut für Metallforschung, Seestrasse 75, D-70174 Stuttgart, Germany
U. Burkhardt
Affiliation:
Max-Planck-Institut für Metallforschung, Seestrasse 75, D-70174 Stuttgart, Germany
M. Ellner
Affiliation:
Max-Planck-Institut für Metallforschung, Seestrasse 75, D-70174 Stuttgart, Germany
Yu. Grin
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

Abstract

Two homeotypical phases occur at the mole fraction xAl≈0.75 in the ternary system Co-Ni-Al: the pseudoternary intermetallic compound (Co, Ni)4Al13(h) (space group C2/m, Pearson code mC(34-1.8)) [Notation, according to Parthé et al. (1993). TYPIX, Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types (Springer, Berlin), Vol. 2, p. 269, Vol. 3, p. 1055]. For structures with partly occupied sites, the hybrid Pearson code is given as (the sum of the multiplicities of all, fully or partly occupied sites in the unit cell)−(number of structural vacancies in the unit cell)], and the ternary compound Co2NiAl9 (Immm, oI96). Powder diffraction data are reported for these materials or phases—from the viewpoint of phase equilibria—immediately neighboring phases.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akselrud, L. G., Grin, Yu. N., Zavalii, P. Yu., Pecharskii, V. K., and Fundamenskii, V. S. (1989). “CSD—universal program package for single crystal and/or powder structure determination treatment,” in the 12th European Crystallographic Meeting, Collected Abstracts, Moscow 3, 155; Z. Kristallogr. Suppl. 2, 155.Google Scholar
Bradley, A. J., and Taylor, A. (1937a). “An X-ray analysis of the nickel-aluminum system,” Proc. R. Soc. London, Ser. A 159, 5672.Google Scholar
Bradley, A. J., and Taylor, A. (1937b). “The crystal structure of Ni 2Al 3 and NiAl 3,” Philos. Mag. 23, 10491067.CrossRefGoogle Scholar
Bradley, A. J., and Cheng, C. S. (1938). “The crystal structure of Co 2Al 5,” Z. Kristallogr. A99, 480487.CrossRefGoogle Scholar
Bradley, A. J., and Seager, G. C. (1939). “An X-ray investigation of cobalt-aluminium alloys,” J. Inst. Met. 64, 509516.Google Scholar
Burkhardt, U., Ellner, M., and Grin, Yu. (1995). “On the twinning of alloys of near CoAl 3 stoichiometry exhibiting decagonal pseudosymmetry,” Z. Metallkd. 86, 281288.Google Scholar
Douglas, A. M. B. (1950). “The structure of Co 2Al 9,” Acta Crystallogr. 3, 1924.CrossRefGoogle Scholar
Edshammar, L.-E. (1964). “The structure of Os 4Al 13,” Acta Chem. Scand. 18, 281288.CrossRefGoogle Scholar
Ellner, M., Kek, S., and Predel, B. (1989). “Ni 3Al 4—a phase with ordered vacancies isotypic to Ni 3Ga 4,” J. Less-Common Met. 154, 207215.CrossRefGoogle Scholar
Gödecke, T. (1997). “Stable and metastable states in the Al-AlCo binary system,” Z. Metallkd. 88, 904910.Google Scholar
Gödecke, T., and Ellner, M. (1996). “Phase equilibria in the aluminum-rich portion of the binary system Co-Al and in the cobalt/aluminum-rich portion of the ternary system Co-Ni-Al,” Z. Metallkd. 87, 854864.Google Scholar
Gödecke, T., and Ellner, M. (1997). “Phase equilibria in the aluminum-rich portion of the ternary system Co-Ni-Al at 75 at. % and 78 at. % Al,” Z. Metallkd. 87, 382389.Google Scholar
Grin, J., Burkhardt, U., Ellner, M., and Peters, K. (1994). “Crystal structure of the orthorhombic Co 4Al 13,” J. Alloys Compd. 206, 243247.CrossRefGoogle Scholar
Grin, Yu., Peters, K., Burkhardt, U., Gotzmann, K., and Ellner, M. (1998). “The structure of the ternary phase Co 2NiAl 9 (Y 2),” Z. Kristallogr. (to be published).Google Scholar
Hudd, R. C., and Taylor, W. H. (1962). “The structure of Co 4Al 13,” Acta Crystallogr. 15, 441442.CrossRefGoogle Scholar
Kek, S. (1991). “Untersuchungen der Konstitution, Struktur und thermodynamischen Eigenschaften binärer und ternärer Legierungen der Übergangsmetalle mit Aluminium,” Thesis, Universität Stuttgart and Max-Planck-Institut für Metallforschung, Stuttgart, pp. 151–154, 160–163.Google Scholar
Kek, S., and Mayer, J. (1993). “X-ray and electron diffraction investigations on the stable decagonal phase in Co-Ni-Al alloys,” Z. Kristallogr. 205, 235253.Google Scholar
Lu, X.-S., and Li, F.-H. (1980). “The crystal structure of (Ni, Co)3Al 4—a new vacancy controlled phase,” Wuli Xuebao Acta Phys. Sin. 29, 182198.Google Scholar
Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., and Gladyshevskii, R. E. (1993). TYPIX, Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types (Springer, Berlin), Vol. 2, p. 269; Vol. 3, p. 1055.Google Scholar
Raynor, G. V., and Pfeil, P. C. L. (1947). “The constitution of the aluminum-rich aluminum-cobalt-nickel alloys,” J. Inst. Met. 73, 609623.Google Scholar
Ridley, N. (1966). “Defect structures in binary and ternary alloys based on CoAl,” J. Inst. Met. 94, 255258.Google Scholar
Smith, G. S., and Snyder, R. L. (1979). “F N: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Steurer, W., Haibach, T., Zhang, B., Kek, S., and Lück, R. (1993). “The structure of decagonal Al 70Ni 15Co 15,” Acta Crystallogr., Sect. B: Struct. Sci. 49, 661675.CrossRefGoogle Scholar
Tsai, A. P.Inoue, A.Masumoto, T. (1989). “New decagonal Al-Ni-Fe and Al-Ni-Co alloys prepared by liquid quenching,” Mater. Trans., JIM 30, 150154; “Stable decagonal Al-Co-Ni and Al-Co-Cu quasicrystals,” ibid., 463–473.CrossRefGoogle Scholar
Wolff de, P. M. (1968). “A simplified criterion for reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.CrossRefGoogle Scholar
Zhang, B., Gramlich, V., and Steurer, W. (1995). “Al 13−x(Co 1−yNi y)4, a new approximant of the decagonal quasicrystal in the Al-Co-Ni system,” Z. Kristallogr. 210, 498503.CrossRefGoogle Scholar